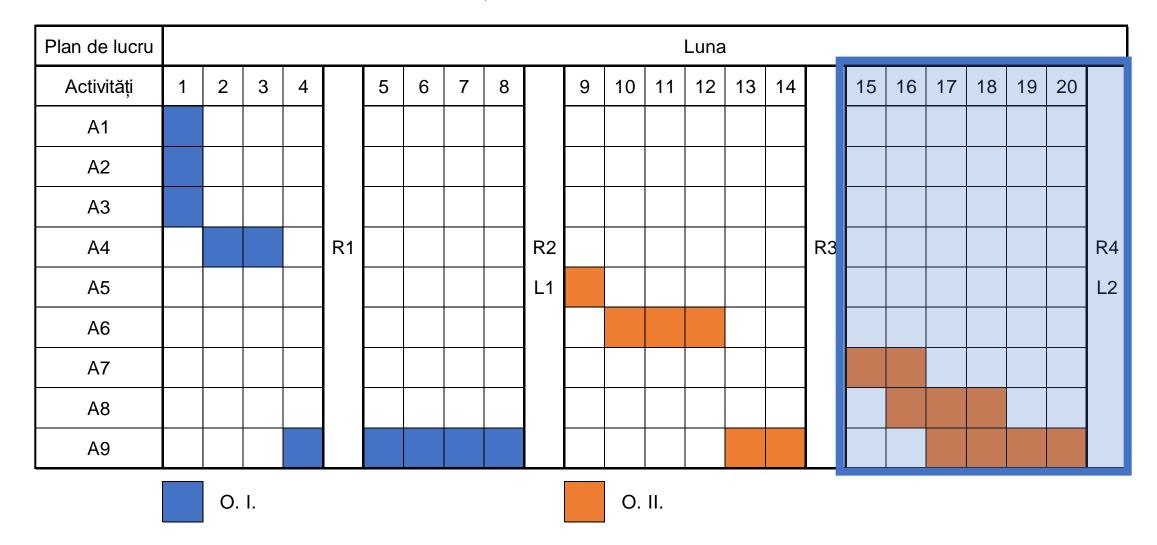
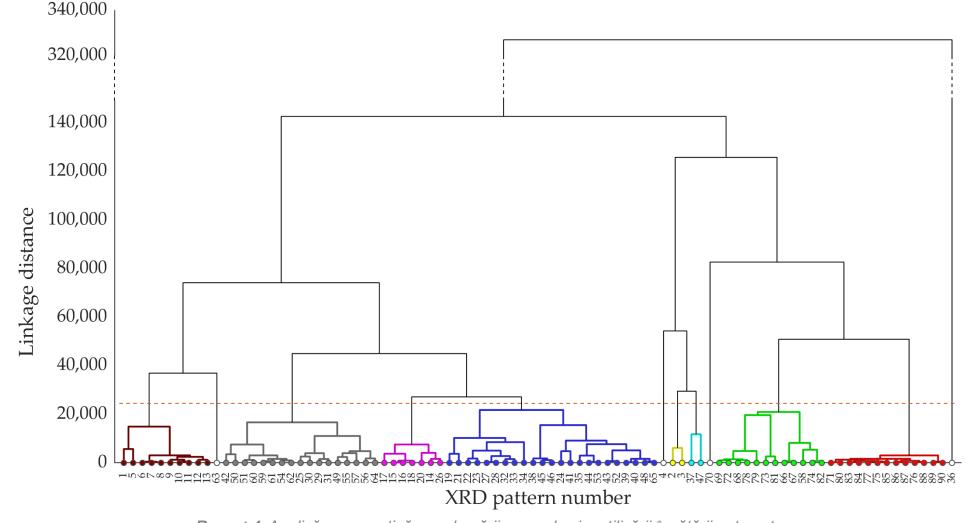
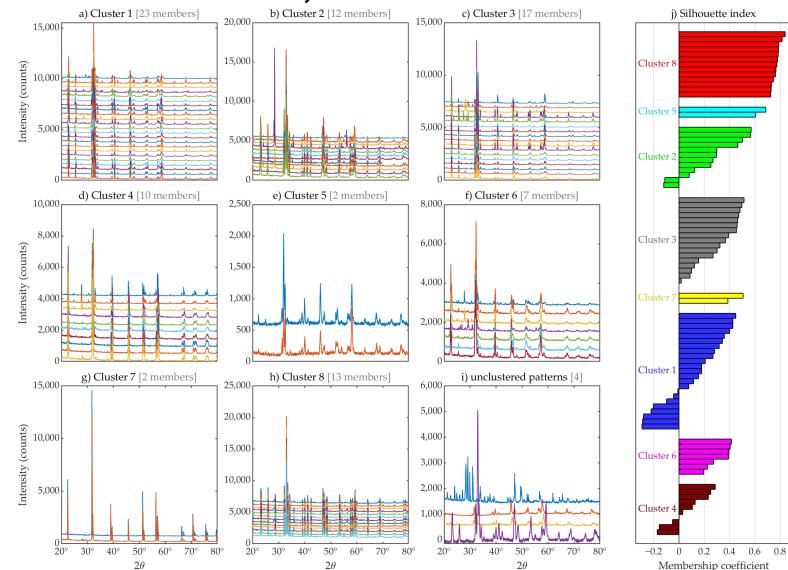
Utilizarea învățării automate pentru generarea computerizată a diagramelor de echilibru termic fazal din date de difractometrie de raze X

Raport 4: Analiză comparativă a prelucrării manuale și a utilizării învățării automate pentru prelucrarea difractogramelor de raze X în sistemul oxidic BiFeO₃–EuFeO₃


AOSR-TEAMS 2023-2024


Conducător de proiect: Vasile–Adrian SURDU Membru: Romuald GYŐRGY

Calendarul activităților



Activitatea 6. Analiza difractogramelor de raze X [...] utilizând învățarea automată

3 decembrie 2024

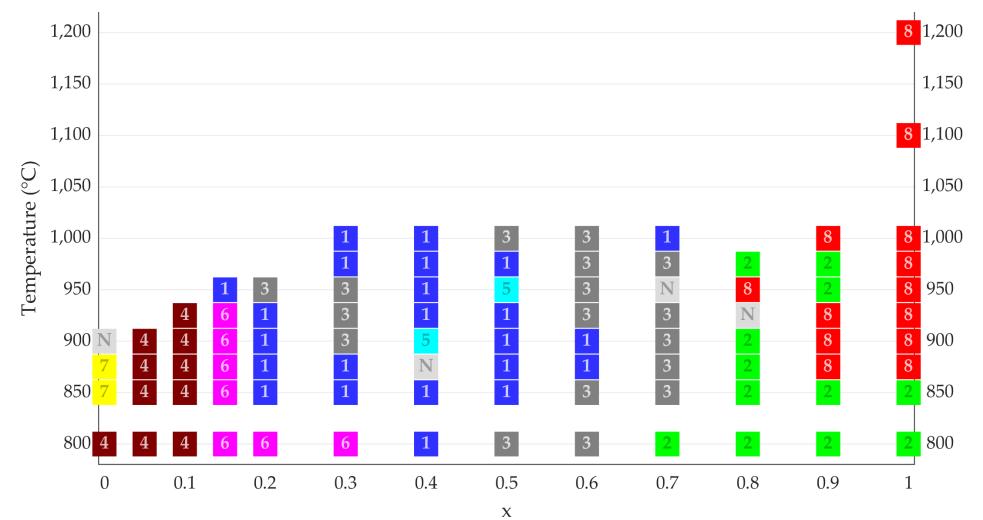
Activitatea 6. Analiza difractogramelor de raze X [...] utilizând învățarea automată

3 decembrie 2024

4

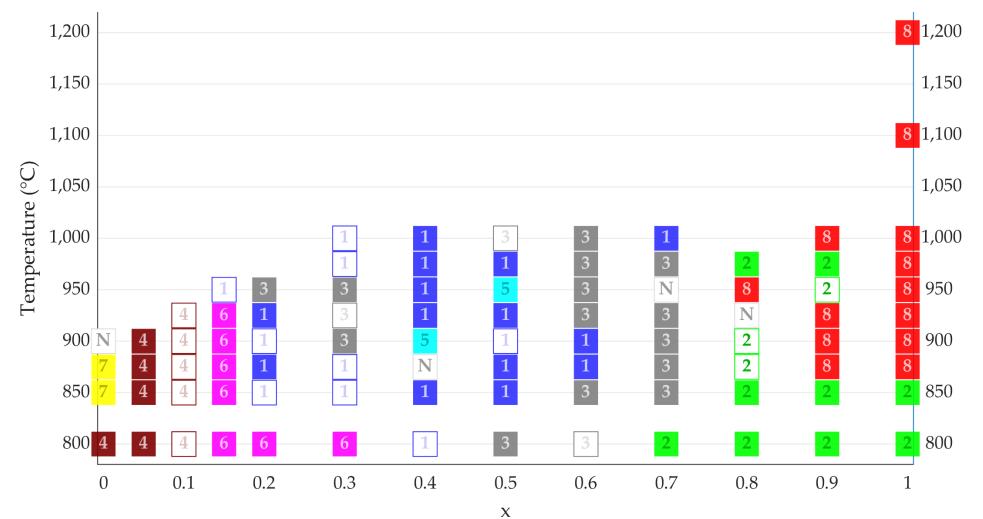
Pentru generarea rezultatelor a fost necesară conectarea software (HighScore Plus – MATLAB)

1) fs = dir(fullfile('input', '*.xrdml'));


2) fileName = string({fs.name});

- 3) % infer Eu percentage (0 < x < 1)
- 4) xpercent = str2double(regexp(fileName, '(?<=Eu)\d+', 'match', 'once'));
- 5) locus = ismissing(xpercent);
- 6) oneminusx = str2double(regexp(fileName, '(?<=Bi)\d+', 'match', 'once'));
- 7) assert(isequal(locus, ismissing(oneminusx)))
- 8) assert(all(xpercent(~locus) + oneminusx(~locus) == 100))
- 9) % infer Eu percentage (x=0 OR x=1)
- 10) BiEu = regexp(fileName, 'Bi|Eu', 'match');
- 11) assert(all(cellfun(@numel, BiEu(~locus))==2))
- 12) missingX = xpercent(locus);
- 13) missingX([BiEu{locus}]=="Bi") = 0;

Pentru generarea rezultatelor a fost necesară conectarea software (HighScore Plus – MATLAB)


- 14) missingX([BiEu{locus}]=="Eu") = 100;
- 15) assert(nnz(ismissing(missingX))==0)
- 16) xpercent(locus) = missingX;
- 17) % infer temperature values
- 18) str = regexp(fileName, '(?<=_)\w+?(?=(_2h)?\.xrdml\$)', 'match', 'once');
- 19) temperature = str2double(str);
- 20) temperature(str=="presinterizat") = 800;
- 21) assert(nnz(ismissing(temperature))==0)
- 22) % order by Eu percentage, then temperature
- 23) [XT, idx] = sortrows([xpercent(:), temperature(:)]);
- 24) fileName = fileName(idx);
- 25) path = fs(1).folder;
- 26) save(fullfile('+pfig','data.mat'), '-append', 'path', 'fileName', 'XT');

Activitatea 8. Stabilirea relațiilor de echilibru termic fazal din date de difractometrie de raze X

3 decembrie 2024

Activitatea 8. Stabilirea relațiilor de echilibru termic fazal din date de difractometrie de raze X

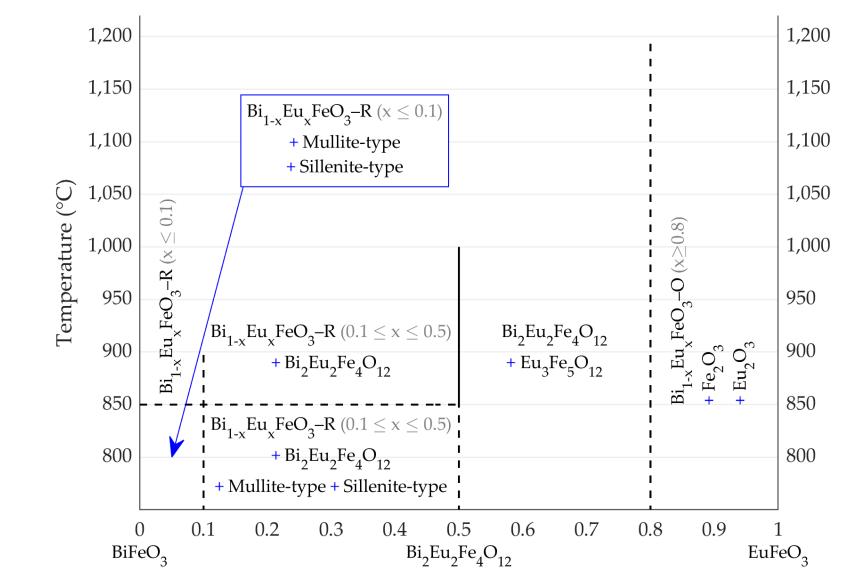
3 decembrie 2024

ten	Action	Parar	meter set
<u></u>	Action K-Alpha2		AOSR
	Cetermine Background		AOSR 🗧
1	Karch Peaks		Identify 🛛 🛓
	🕂 Search & Match	í 👔 /	AOSR
	🖌 Automatic Rietveld Ste	eps 🛓	AOSR
	ip K-Alpha2 - [AOSR]]	x
	Anode material: Cu	I	Strip K-Alpha2
	K-Alpha1 wavelength [Å]:	1.540598	
	K-Alpha2 wavelength [Å]:	1.544426	Save <u>t</u> o List
	K-Alpha wavelength [Å]:	<mark>1.541874</mark>	<u>R</u> eplace
	K-Alpha2 shift:	0.000000	
	Met <u>h</u> od: Ra	achinger \vee	Close
	K-A2 / K-A1 Intensity ratio:	0.500000	
	Wavelength ratio corr. [ppm]:	0	Less <<
	Select Parameter Set		
	AOSR	Y □ X	🚡 🕹 🗙

Raport 4: Analiză comparativă a prelucrării manuale și a utilizării învățării automate

pentru prelucrarea difractogramelor de raze X în sistemul oxidic BiFeO₃-EuFeO₃

					Search & Match - [Untitled]	x
Step	Action	Paramete	er sei	t		
1	🕂 🗛 Strip K-Alpha2	🖆 AOS	R		Parameters Automatic	
2	Electronic Background	🖆 AOS	R		None	Search
3	👫 Search Peaks	🖆 Iden	tify		None	
4	A Search & Match	🖆 AOS	R	-	Restriction set <u>E</u> dit Restriction Set	ets
5	Automatic Rietveld Steps	AOS	R		Select restriction set:	
A	omatic Rietveld Steps - [Untitle	41			AOSR	~
	g.No. Parameters varied Min. Shift/ESD	Used			- [AOSR] Restrictions	x
		.1 🔽				
	2 Flat background 0	.1 👿			Subfiles Chemistry Quality Crystallography Strings	
	3 Zero shift 0	.1 👿			All of:	Load
	4 Lattice parameters 0	.8 🔽				Save as Subset
	5 More background 0	.1 🔽			At least one of: Bi Fe O	
	6 W (Halfwidth) 0	.1 🔽	=		None of: H He Li Be B C N F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Co N	
	7 Preferred orientatio 0	.1 📃			Periodic Table Clear Add Rest to None of	
	8 Atomic coordinates (0	.1 🔳				
	9 Site occupancy facto 0	.1 🔳				
	10 U, V (Halfwidth) 0	.1 🔽			No. of elements present	
I	11 Peak shape paramet 0.1	÷ 🔽			Min. Number of Elements: 1 Max. Number of Elements: 105	Close
	12 B anisotropic 0	.1 📃		\naliză		Close
	13 Absorption 0	.1 🔳	-	lucrar	Resulting hits: 415 patterns of 511583	<u>L</u> ess << 10
a 1	10 1 01				Resulting fills: 415 patterns of 511565	


XRD											
pattern	x	T(°C)	(Bi,Eu)FeO3-r	Sillenite-type	Mullite-type	Bi ₂ O ₃	Bi2Eu2Fe4O12	(Bi,Eu)FeO3-0 (Pbnm)	Eu3Fe5O12	Eu2O3	Fe ₂ O ₃
number											
1	0	800	84.7%	15.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
2	0	850	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
3	0	875	99.0%	0.9%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
4	0	900	0.0%	0.5%	99.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
5	0.05	800	80.6%	19.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
6	0.05	850	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
7	0.05	875	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
8	0.05	900	99.7%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
9	0.1	800	80.2%	16.5%	1.9%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%
10	0.1	850	98.4%	0.4%	0.4%	0.0%	0.8%	0.0%	0.0%	0.0%	0.0%
11	0.1	875	99.2%	0.5%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%
12	0.1	900	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
13	0.1	925	99.4%	0.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

XRD											
pattern	x	T(°C)	(Bi,Eu)FeO3-r	Sillenite-type	Mullite-type	Bi ₂ O ₃	Bi2Eu2Fe4O12	(Bi,Eu)FeO3-0 (Pbnm)	Eu3Fe5O12	Eu ₂ O ₃	Fe ₂ O ₃
number											
14	0.15	800	53.0%	14.1%	1.5%	0.0%	31.4%	0.0%	0.0%	0.0%	0.0%
15	0.15	850	49.9%	0.0%	0.0%	0.0%	50.1%	0.0%	0.0%	0.0%	0.0%
16	0.15	875	81.0%	0.0%	0.0%	0.0%	19.0%	0.0%	0.0%	0.0%	0.0%
17	0.15	900	83.2%	0.0%	0.0%	0.0%	16.8%	0.0%	0.0%	0.0%	0.0%
18	0.15	925	64.0%	0.0%	1.8%	0.0%	34.2%	0.0%	0.0%	0.0%	0.0%
19	0.15	950	32.1%	0.5%	4.0%	0.0%	63.4%	0.0%	0.0%	0.0%	0.0%
20	0.2	800	38.9%	8.8%	1.5%	0.0%	50.8%	0.0%	0.0%	0.0%	0.0%
21	0.2	850	31.2%	0.3%	1.3%	0.0%	67.2%	0.0%	0.0%	0.0%	0.0%
22	0.2	875	67.7%	0.0%	0.0%	0.0%	32.3%	0.0%	0.0%	0.0%	0.0%
23	0.2	900	65.1%	0.0%	0.0%	0.0%	34.9%	0.0%	0.0%	0.0%	0.0%
24	0.2	925	44.1%	0.0%	4.3%	0.0%	51.6%	0.0%	0.0%	0.0%	0.0%
25	0.2	950	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
26	0.3	800	43.1%	0.0%	17.7%	0.0%	39.2%	0.0%	0.0%	0.0%	0.0%

XRD											
pattern	x	T(°C)	(Bi,Eu)FeO3-r	Sillenite-type	Mullite-type	Bi ₂ O ₃	Bi2Eu2Fe4O12	(Bi,Eu)FeO3-0 (Pbnm)	Eu3Fe5O12	Eu2O3	Fe ₂ O ₃
number											
27	0.3	850	13.7%	0.0%	0.0%	0.0%	86.3%	0.0%	0.0%	0.0%	0.0%
28	0.3	875	9.7%	0.0%	0.0%	0.0%	90.3%	0.0%	0.0%	0.0%	0.0%
29	0.3	900	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
30	0.3	925	0.0%	2.5%	8.1%	0.0%	89.4%	0.0%	0.0%	0.0%	0.0%
31	0.3	950	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
32	0.3	975	12.2%	0.5%	4.3%	0.0%	83.0%	0.0%	0.0%	0.0%	0.0%
33	0.3	1000	16.0%	0.0%	0.0%	0.0%	84.0%	0.0%	0.0%	0.0%	0.0%
34	0.4	800	21.8%	0.3%	2.1%	0.0%	75.8%	0.0%	0.0%	0.0%	0.0%
35	0.4	850	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
37	0.4	900	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
38	0.4	925	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
39	0.4	950	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
40	0.4	975	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%

XRD											
pattern	x	T(°C)	(Bi,Eu)FeO3-r	Sillenite-type	Mullite-type	Bi ₂ O ₃	Bi2Eu2Fe4O12	(Bi,Eu)FeO3-0 (Pbnm)	Eu ₃ Fe ₅ O ₁₂	Eu ₂ O ₃	Fe ₂ O ₃
number											
38	0.4	925	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
39	0.4	950	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
40	0.4	975	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
41	0.4	1000	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
42	0.5	800	24.7%	0.0%	6.3%	0.0%	69.0%	0.0%	0.0%	0.0%	0.0%
43	0.5	850	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
44	0.5	875	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
45	0.5	900	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
46	0.5	925	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
48	0.5	975	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
49	0.5	1000	0.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%
50	0.6	800	0.0%	1.1%	17.5%	0.0%	81.4%	0.0%	0.0%	0.0%	0.0%

Activitatea 8. Stabilirea relațiilor de echilibru termic fazal din date de difractometrie de raze X

3 decembrie 2024

15

Sumarul activităților realizate

- ✓A fost explorată utilizarea metodelor de învățare automată utilizate pentru prelucrarea difractogramelor de raze X. Studiul a avut în vedere sistematizarea etapelor necesare pentru a fi parcurse, a parametrilor utilizați și a corelației între parametrii de analiză și rezultatul urmărit.
- A fost utilizată învățarea automată pentru clasificarea difractogramelor de raze X obținute pentru domenii de compoziție nestudiate (până acum) ale unor sisteme oxidice de interes practic
- Am utilizat secvențe de instrucțiuni de calculator pentru automatizarea prelucrării difractogramelor de raze X.
- ✓ Au fost determinate relațiile de echilibru termic fazal în sistemul oxidic BiFeO₃–EuFeO₃.

Indicatorii proiectului

Lucrare 1 (recenzie) cu tema: Algoritmi de învățare automată în prelucrarea difractogramelor de raze X: principii și aplicații – F.I. min. 0.6

F.I. = 2.5 (Q1)

Open Access Review

X-ray Diffraction Data Analysis by Machine Learning Methods—A Review

by Vasile-Adrian Surdu 1,2 🖂 🕩 and Romuald Győrgy 2,3,* 🖂 🕩

¹ Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania

- ² Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- ³ Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- * Author to whom correspondence should be addressed.

Appl. Sci. 2023, 13(17), 9992; https://doi.org/10.3390/app13179992

Submission received: 4 August 2023 / Revised: 1 September 2023 / Accepted: 1 September 2023 / Published: 4 September 2023

Indicatorii proiectului

Lucrare 2 (articol) cu tema: Relații de echilibru termic fazal în sistemul oxidic BiFeO₃–EuFeO₃ determinate din date de difracție de raze X prin algoritmi de învățare automată – F.I. min. 0.6

F.I. = 3.1 (<mark>Q2</mark>)

Open Access Article

Phase Relations in the Pseudo-Binary BiFeO₃–EuFeO₃ System in the Subsolidus Region Derived from X-Ray Diffraction Data—A Machine Learning Approach

by Vasile-Adrian Surdu ^{1,2} 🖂 🝺 and Romuald Győrgy ^{2,3,*} 🖂 🕩

- ¹ Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- ² Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
- ³ Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- Author to whom correspondence should be addressed.

Inorganics 2024, 12(12), 314; https://doi.org/10.3390/inorganics12120314 (registering DOI)

Submission received: 24 October 2024 / Revised: 25 November 2024 / Accepted: 2 December 2024 / Published: 4 December 2024