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Rezumat. Rețeaua neuronală artificială este un instrument puternic pentru predicția 

valorilor parametrilor, care prezintă un set de date de intrare redus, mai ales din punct 

de vedere al reducerii costurilor și timpului de efectuare a măsurătorilor. Predicția 

rugozității suprafeței în funcție de tipul de traiectorie al frezei pe suprafața de prelucrat 

în fazele de finisare se poate realiza atât prin unificarea rezultatelor cât și prin 

împărțirea setului de date în multi-clase. Lucrarea prezintă, pentru parametrul 

rugozitate, modul în care un set de date de intrare redus, obținut prin măsurare, este 

utilizat pentru predicție, precum și pentru extinderea setului de date. Testele efectuate au 

fost pentru prelucrarea unei suprafețe planare înclinate la un unghi constant pentru o 

piesă de probă din Aluminium 7075. 

Abstract. Artificial Neural Network is a powerful tool for the prediction of parameter 

values, which presents a set of low input data, especially in terms of reducing costs and 

time for making measurements. The prediction of surface roughness according to the 

different tool trajectories of the finishing phase in the milling process can be achieved 

both by unifying the results and dividing the set of data into multi-classes. The paper 

presents, for the roughness parameter, how a set of low number of input data obtained by 

measurement is used for prediction as well as data set extension. The experimental tests 

were made for machining an aluminium 7075 part with plane surfaces at constant angle. 

The milling process was made without cooling. 

1. Keywords: prediction, artificial neural networks, roughness, milling trajectory. 

1. Introduction 

With the recent increase in energy demand and constraints in carbon emissions, 

energy saving has become a priority for the manufacturing industry. In the milling 
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process energy savings up to 6-40% can be obtained based on the optimum choice 

of cutting parameters, tools and optimum tool path [1], [2]. 

With the development of computers and digital environments a paradigm shift in 

manufacturing from ‘real’ to ‘virtual’ production has resulted in a build-up of 

research interests in the field. With the aid of computers, simulating and modelling 

a physical manufacturing system become possible in virtual environments. The 

objective of simulating manufacturing technologies in virtual reality systems is to 

design a completely digital factory. The part is modelled and produced in a 

computer simulation environment with predicted errors in order to achieve the best 

accuracy in the produced part by choosing optimized process parameters [3].  

Optimum machining parameters are of great concern in manufacturing environments, 

where the economy of machining operations plays a key role in competitiveness in 

the market. Although NC machines can reduce lead times considerably, the 

machining time is almost the same as in conventional machining when machining 

parameters are selected from machining databases or handbooks [4]. 

The use of many methods has been reported in the literature to solve optimization 

problems for machining parameters. All the methods use different procedures in 

optimizing the machining parameter with the same objective i.e. minimum 

production cost, minimum production time, maximum metal removal rate and 

maximum profit rate. These algorithm models for optimization include: Feasible 

directions, Particle Swarm Optimization, Memetic Algorithm, Taguchi Method, 

Genetic Algorithm, Tribes Algorithm, Immune Algorithm, Ant Colony 

Optimization, Simulated Annealing, Simulation Procedure, Genetic Expression 

Programming [6]. 

Metaeuristic algorithm models have good prediction precision for particular 

applications. Because ANN with backpropagation is suitable for general 

applications due to the flexibility in building architecture as well as the 

backpropagation learning of the error to the weight between the hidden node 

connections in the hidden layers was used in the case study presented in this paper. 

2. The Concept of ANN with Backpropagation 

The use of ANN for prediction is a modern and complex means of identifying the 

values of target parameters / indicators that are of interest in the production 

process. The major advantage is the ability of ANN prediction through learning 

based on a set of inputs determined experimentally, both values within and 

outside the scope of representation. An ANN of complex type with superior 

performance is performed with total backpropagation connected with several 

hidden layers and nodes per hidden layer. Figure 1 shows the architecture of an 

ANN with backpropagation totally connected, with h(x) hidden layers, NHL(y) 

neurons in the hidden layer with the weights of the connection between two 
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neurons W. The resulting signals, represented by the output layer errors, are 

unified and used to run the entire network back to the hidden layers, thus enabling 

ANN to learn. The backpropagation algorithm is used to find a local minimum of 

the error function. The number of hidden layers neurons contributes to the most 

accurate identification of the algorithm contained in the training phase. This 

desideratum has its limits because between the number of hidden layers and the 

number of neurons per hidden layer there must be a balance to avoid the following 

situations: 

 a large number of hidden neurons on the hidden layer negatively influences the 

generalization capacity and allocates a high processing time to the training phase; 

 a small number of hidden neurons on the hidden layer is not enough to produce 

an appropriate ANN resulting in an increase in the mean square error and the 

training data error. 

 
Fig. 1. ANN Architecture with total backpropagation connected. Source: [14], [15]. 

The most used ANN types with backpropagation are: 

 Hopfield which are recurrent, symmetric, totally connected and self-

assembled networks [8] and are designed so that no synchronization is required, 

each unit having a kind of elementary system in complex interaction with the rest 

of the assembly [9]. 

 Elman which can be configured on multiple levels of functional units, 

including forward-to-back network connections and inverse connections (linking 

hidden layers to input layers). The storage of hidden layer outputs is achieved by 

inserting context units similar to short-term memory [10]. 



 

Daniel-Petru Ghencea,  

46 Florea-Dorel Anania, Miron Zapciu, Andra-Elena Pena, Petre-Raul Ghencea  

 

In order to achieve the most accurate predictions, which supposes the 

identification of the algorithm underlying the analyzed data set, linear regression 

is used by the regression slope with parameter - r2. 

3. Method of Application of ANN with Backpropagation in the Prediction of 

Surface Quality 

Step 1. Establish the input data set. This step removes the rough values in the 

measured field. Eliminating these values serves to increase the degree of 

identification of the algorithm to predict the values of interest and implicitly to 

reduce ANN learning time with backpropagation. 

Step 2. Choosing how to use the data set. Depending on the concentration level 

of the data set values, for each test, choose one of the modes of use: 

➢ in the initial order as measured by the measurements; 

➢ by arranging the ascending / descending order of the data set; 

➢ by dividing the data set in the ANN configuration. 

Step 3. De-multiplication data sets containing values outside the range [-1, 1]. 

Since VGD works with data series in the range [-1, 1], the values must be scaled 

so that they have to be subunits. The de-multiplexing is performed for the entire 

set of data in that test, so it does not apply only to individually de-multiplexing 

values that exceed the range. 

Step 4. Establishing the data set for training / validation and the prediction.  

Step 5. Determination of the optimal simulation of the ANN architecture for 

the best predictions are obtained. At this stage experimentally determine the 

optimal architecture of ANN with backpropagation on: 

a) the number of hidden layers and the number of nodes per hidden layer; 

b) the number of cycles for validation and prediction; 

c) the sum of errors and the average of the errors per data set is as small as 

possible; 

d) learning rate and transfer function. 

Step 6. Multiply the values in data sets that have been scaled to the same 

coefficient. 

Step 7. Analysis and interpretation of predicted values. 

4. Case Study on Roughness Prediction for Milling Surfaces. 

One of the main goals in finishing operations is to achieve a very low work piece 

surface roughness. However, surface irregularities, which are always present in all 

machined parts, depend on several factors. In milling operations, surface quality 
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improves at higher cutting speeds. Depth of cut indirectly affects surface quality, 

since the cutting force, vibration and cutting temperature increase with an increase 

in the depth of cut. Other factors that influence surface roughness are feed rate, 

tool nose radius, tool wear, cutting strategy, the tool’s trajectory during cutting, 

the work piece material, the cooling/lubrication system and the dynamic 

parameters of machining, such as the cutting force, tool deflection, vibration and 

several thermal phenomena. The machining parameters in milling operations 

consist of the cutting speed, depth of cut, feed rate and number of passes. These 

machining parameters significantly impact on the cost, productivity and quality of 

machining parts. The effective optimizations of these parameters affect 

dramatically the cost and production time of machined components as well as the 

quality of final products. 

The goal of this paper is to find a way to predict a global roughness of a machined 

surface based on a minimum number of measurements. We use these results for 

the accurate calculus of federate based on the tool trajectory type [1] in order to 

optimize the machining time and surface quality (Figure 1). 

 
Fig. 2. Finishing test for 9 trajectories type. 

The roughness obtained on the 7075 aluminium surface was measured in the case 

of 9 milling trajectories (Figure 2). 

A number of 6 measurements was performed (3 longitudinal/3 transversal) for 

each test (Figure 3). For these measurements we obtained a variation of the 

longitudinal roughness between 0.42-1.32 and the cross-sectional roughness 

between 0.45-1.22, so we have an average longitudinal roughness of 0.87 and for 

the cross-section of 0.835 [5]. 

Based on the measured data set, we want to predict the roughness magnitude for 

intermediate values, so expanding the data set from 27 to 80. To predict we use 

the artificial intelligence component - artificial neural network with 

backpropagation (ANN-BP) implemented in the software Visual Gene Developer 

1.7 (Build 763). VGD works with numbers in the closed range [-1, 1], which 
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implies the de-multiplexing of unit numbers to obtain subunit numbers (e.g. 93 

must be scaled by 100 and 0.93 is obtained).  

 
Fig. 3. Tool trajectories used for test : 1 – perpendicular on machine Y axis bottom → top; 

2-perpendicular on machine Y axis top → bottom; 3–parallel top → bottom curves ; 4–spiral from 

outside to inside; 5–between curves – top→ bottom ;6 – between curves – lateral; 7–3D drive 

curve finishing; 8–3D finishing; 9–Spiral/radial finishing. 

 
Fig. 4. Roughness measurement. 

The data set for the 9 milling trajectories was analyzed as follows: 

a) for trajectories 9, 6 and 5, the input data set was made from the first two 

measurements and the third input variable was used for validation and prediction 

(Table 1). For Trajectory 9, a simple configuration of ANN was used with 2 

hidden layers and 3 nodes per hidden layer. In contrast, the roughness prediction 

for trajectories 6 and 5 required an ANN of complex configuration with 5 hidden 

layers and 10 nodes per hidden layer. 
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Table 1. Partitioning of the input data set for test number 9 

No. Test longitudinal transverse longitudinal transverse

0,46 0,98 0,46 0,98

0,56 0,76 0,56 0,76

0,69 0,67 0,58 0,7943757

0,60 0,7743953

0,62 0,7533252

0,64 0,7312565

0,66 0,7082964

0,68 0,6845647

0,69 0,6724498

Measured values Predicted values with ANN-BP

9

 
b) for trajectories 2, 7 and 8, the input data set was made from the 3 

measurements and the prediction was for values within the data set. For trajectory 

2 an average configuration ANN was used with 2 hidden layers and 10 nodes per 

hidden layer. The roughness prediction for trajectories 7 and 8 required a 5-layer 

complex configuration RNA configuration and 10 nodes per hidden layer. 

c) for trajectories 1, 3 and 4, the input data set was divided into two classes 

and the prediction was for values within the class set. For trajectory 1an ANN 

with simple configuration was used with 1 hidden layer and 10 nodes per hidden 

layer. Roughness prediction for trajectories 3 and 4 required an average 

configuration ANN with 2 hidden layers and 10 nodes per hidden layer. 

The nine cases are dominated by 4 mixed-type models (with male human-

female biological thinking) and 4 female models (with human feminine biological 

thinking) [11]. 

ANN models with simple configuration works with an informational flow 

of numbers close to ± 1 (Figure 5) [12], [13]. 

 
Fig. 5. ANN model with simple configuration and propagation of the information flow with 

numbers to the extremes of the domain. 
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ANN models with medium and complex configuration works with an 

informational flow of numbers close to ± 0 (Figure 6). 

 
Fig. 6. ANN models with medium (a) / complex (b) configuration and propagation of the 

information flow with numbers to the centre of the domain. 

Figure 7 presents the regression slope distribution modes for which the 

values of the r2 determination coefficient of 1.000188 were obtained in the case of 

a) (over-assessment of 0.02%), of 0.9999992 in case b) (precise assessment of 

0.00008%) and 0.61842 for c) (imprecise valuation of 38.16%). The higher the 

value of the coefficient of determination, r2, is closer to the maximum value 1, the 

variance of the response variable can be explained by the explanatory variables, 

the difference being attributable to some unknown variables or variables inherent. 

It can be observed that in 3 cases (1, 2 and 3), although the regression slope has 

high imprecision in terms of the coefficient of determination, r2, the predicted 

roughness average is very close to the average roughness measured (Table 2).  

Conclusion: Not in all cases where the coefficient of determination, r2, is 

greater than or equal to 0.93 leads to very accurate predictions. 

 

Fig. 7. Modes of data set distribution on regression slope. 
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It can be seen from Table 2 that the difference between the average of roughness 

obtained from measurements (classic average) and predicted (mean ANN) is a 

very small difference of 0.00663 (0.97% <1%). This denotes that the way of 

realizing the prediction characterized by: the input data set allocation module, the 

ANN-BP (hidden layers, nodes per hidden state) configuration, the ANN-BP 

training and the validation of the data were correctly performed. 

Table 2. Comparison of experimental and predicted average with ANN-BP.  

Synthesis of predictive features 

No. Test Measured Average Average ANN-BP Regr. Coef. Slope y-intercept

9 0,69 0,6860 0,999996 0,343 0,552

6 0,60 0,5863 1,000148 0,091 0,750

5 0,90 0,9342 1,000188 0,041 0,063

2 0,59 0,5816 0,873848 0,873 0,066

7 0,79 0,7835 0,999992 0,536 0,345

8 0,90 0,8469 0,999999 0,991 0,005

1 0,53 0,5260 0,618420 0,453 0,297

3 0,65 0,6417 0,826680 0,521 0,247

4 0,50 0,4958 0,999984 0,947 0,028

Average 0,6824 0,6758  

The comparison between the mean measured for each test and the average 

predicted by ANN-BP is shown in Figure 8. In 4 cases the difference is in the 

order of the suits, in 3 cases of the order of the milliams and in 2 cases in the order 

of the ten thousands, focuses on differences in the order of suits and millet. 

 
Fig. 8. Comparison between the average roughness and the predicted ANN-BP. 

The precision of roughness prediction with the proposed algorithm is also 

reinforced by the graphical representation of the two sets of data that are very 

similar (Figure 9). 
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Fig. 9 The comparative evolution of measured vs. predicted rugosity with ANN-BP. 

 
Fig. 10. The comparative evolution of the measured vs.  

predicted rugosity for the milling trajectory number 4. 

In the case of 8 trajectories, the resulting graph is identical to the ANN-BP 

predicted chart. Figure 10 illustrates the comparative vs. predicted roughness 

versus milling trajectory number 4 which demonstrates that the two graphs have 

identical patterns. 

The ANN-BP predicted data set for trajectory 8 (Figure 11) makes a distinct 

prediction, which is evidenced by the evolution of the transversal roughness that 

is descending to the pre-measured roughness value 7 followed by the trend of the 

measured data set. 

 

Fig. 11. The comparative evolution of the measured  

vs. predicted rugosity for the milling trajectory number 8. 
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5. Conclusions 

For predictive predictions, simple, medium and complex ANN-BP architecture 

configurations with varying number of hidden layers, nodes per hidden layer, 

learning rates, learning times, experimentally determined characteristics. 

There are also exceptions when the determination coefficient, r2, has values below 

0.93 and the predictions obtained are very good because the realization of the 

ANN-BP architecture identifies the global minimum solution through a rapid 

learning convergence. 

The case study presented in this paper on predicting roughness for different 

milling trajectories is based on a modern analysis tool highlighted by the 

performance of the algorithm on which ANN-BP is based.  

The precision of predictions with ANN-BP demonstrates that they are robust 

instruments that lend themselves to prediction: the behaviour of the equipment 

during the production process, the quality of the products, the maintenance of the 

equipment, the performance of a real flow line. 

Future studies will focus on Fuzzy Logic-ANN type hybrid analyses, each with 

individual and not ANFIS. 
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