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Theoretical investigation of α-like quasimolecules in heavy nuclei
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Quasimolecular α-like ground rotational bands were evidenced a long time ago in light nuclei, but they cannot be
detected in heavy nuclei due to large Coulomb barriers. In order to search for rotational bands built on excited states
in these nuclei, we investigate the shape of an α-nucleus quasimolecular potential matched to a realistic external
α-daughter interaction by using as input data α-decay widths. It turns out that its Gaussian length parameter
lies in a narrow interval, b0 ∈ [0.6,0.8] fm, and the equilibrium radius is slightly larger than the predicted Mott
transition point from nucleonic to the α-cluster phase in finite nuclei, confirming that α clusters are born on the
nuclear surface at low densities. We point out that the α emitters above magic nuclei have the largest spectroscopic
factors Sα ∼ 10%. In addition, we predict that for nuclei with b0 > 0.75 fm, the first excited vibrational resonant
state in the quasimolecular potential is close to the Coulomb barrier and therefore the rotational band built on it
can be evidenced by the structure of the α-scattering cross section versus energy. Moreover, its detection by a
highly sensitive γ -ray beam produced by laser facilities would provide an additional proof for the existence of α

molecules in heavy nuclei.

DOI: 10.1103/PhysRevC.97.064303

I. INTRODUCTION

The α-decay between ground states is energetically not
allowed in light nuclei, but many transitions from excited
states were measured. As a characteristic feature, α-like states
with large spectroscopic factors were detected in this region
[1,2]. The existence of α-daughter quasimolecular rotational
bands in such nuclei is a well established fact [3]. As a rule,
they are connected to the anomalous large angle scattering
(ALAS), where the differential cross sections of α particles
are large compared to the Rutherford values for such nuclei
[4]. The spontaneous emission of α particles from nuclei with
Z � 50 has been interpreted as the penetration of “preformed”
clusters through the Coulomb barrier near the region of the
nuclear interaction [5,6]. The decay width can be expressed
within the R-matrix theory as a product between the α-
cluster reduced width and the penetrability through the barrier
[7]. The importance of α clustering in the nuclear structure
above double magic nuclei was stressed not only for light,
but also for heavy systems [8–10]. It is a well established
fact that the absolute value of the α-decay width cannot be
described without an important clustering component mixed
with standard shell orbitals [11]. A useful tool to investigate
the α clustering in heavy and superheavy nuclei is given by
the α decay to excited states. An important result concerning
the quasimolecular interpretation of final α-daughter rotating
configurations is given in Ref. [12]. There, it was shown
that the strength of the α-daughter quadrupole-quadrupole
interaction reproducing the experimental decay widths to 2+
states in even-even nuclei has significantly larger values above

magic nuclei and rapidly decreases by adding α-cluster con-
figurations. For these nuclei, the spectroscopic factor has also
larger values and therefore the rotating α-daughter molecular
[L+ ⊗ L+]0 configurations have relatively large probabilities.
These configurations should exist at small densities beyond the
nuclear surface, due to the fact that the Pauli principle prohibits
the existence of α clusters inside nuclei [13,14].

The purpose of this paper is to show that it is possible
to determine an α-nucleus quasimolecular potential by using
decay widths and a realistic α-daughter interaction given by
independent scattering data. The parameters of this potential
allow one to predict the position of excited resonant states,
which can in principle be detected in the excitation response
function and therefore confirm the existence of α molecules in
heavy nuclei. The paper is organized as follows: in Sec. II we
prescribe the parameters of the internal pocketlike potential by
using partial α-decay data, in Sec. III we give a systematics of
these parameters, and in the last section we draw conclusions.

II. THEORETICAL BACKGROUND

The dynamics of two composite objects, like the α-
daughter system, is described within the resonating group
method (RGM). The Pauli exchange effects lead to the
occurrence of a repulsive core in the Hamiltonian kernel
[15,16]. Thus, an effective energy dependent pocketlike local
potential simulating the Pauli principle for α decay can be
introduced [17]. For the emission process from a parent (P )
state with angular momentum/parity IP to different daughter
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(D)−α-particle configurations [I ⊗ L]IP
,

P (IP ) → D(I ) + α(L), (2.1)

the wave function describing the α-daughter motion can be
expanded as follows:

�
(P )
IP MP

(R) =
N∑

c=1

ψc(R)

R
Yc(�,R̂), (2.2)

where c = (I,L,IP ) is the channel index of the process, in-
cluding parity values. The core-angular harmonics, depending
on the daughter coordinates � and α-particle angles R̂, are
defined by [18]

Yc(�,R̂) = [�(D)
I (�) ⊗ YL(R̂)]IP MP

. (2.3)

This wave function is a resonant outgoing solution of the
stationary Schrödinger equation, called a Gamow state. For
α decays from the ground states (gs) of even-even nuclei with
Ip = 0+, one has c = I = L = even,

YL(�,R̂) = [
�

(D)
L (�) ⊗ YL(R̂)

]
0. (2.4)

In the case of deformed rotational nuclei, one has �
(D)
LM (�) =

YLM (�), and the final state corresponds to a “quasimolecular”
rotational picture in which the daughter nucleus and α particle
rotate in opposite directions with total momentum IP = 0. For
vibrational nuclei, �LM is a vibrational wave function and
the picture corresponds to a “quasimolecule” where the two
partners vibrate in opposite directions.

For transitions from odd-mass nuclei, IP and I have half-
integer values and the α particles are emitted with angular
momenta |IP − I | � L � IP + I . The resonant states have
positive parity for L = even and negative parity for L = odd.
The daughter wave function has a core-quasiparticle ansatz

�
(D)
IM (�,r) =

∑
Jj

XI
Jj [�J (�) ⊗ φj (r)]IM, (2.5)

where the coefficients are found by diagonalizing a core-
quasiparticle interaction reproducing the energy spectrum. No-
tice that a rotational band with I � j is defined by considering
only a given quasiparticle orbital j in the above superposition.

Let us mention that the coherent state model (CSM) treat-
ment describes the two limits in a unified way by changing a
“deformation parameter” d, which enters the coherent super-
position of quadrupole bosons exp(db

†
2K ) [12].

The α-daughter dynamics is described by the stationary
Schrödinger equation

H�IP MP
(�,R) = Qα�IP MP

(�,R), (2.6)

where Qα is the relative energy of the emitted α particle, called
the Q value of the decay process. The stationarity is a very good
assumption due to the fact that all measured decay widths are
by many orders of magnitude smaller than the corresponding Q
values. Hence, an α-decaying state is identified with a narrow
resonant solution that contains only outgoing components. The
Hamiltonian

H = − h̄2

2μ
∇2

R + HD(�) + V0(�,R) + Vd (�,R) (2.7)

contains the kinetic operator, depending on the reduced mass
μ = mN4AD/(4 + AD), a term describing the dynamics of the
nuclear core HD(�),

HD�
(D)
IMI

(�) = Ec�
(D)
IMI

(�), (2.8)

and the α-core interaction, which we split into spherical and
deformed parts. By using the orthonormality of the core-
angular harmonics in the superposition (2.2), one obtains in
a standard way the system of differential equations for radial
components [18],

d2ψc(R)

dρ2
c

=
N∑

c′=1

Acc′ (R)ψc′(R),c = 1, . . . ,N, (2.9)

where the coupling matrix is given by

Acc′ (R) =
[
Lc(Lc + 1)

ρ2
c

+ V0(�,R)

Qα − Ec

− 1

]
δcc′

+ 〈Y (c)
IP

|Vd (�,R)|Y (c′)
IP

〉
Qα − Ec

, (2.10)

in terms of the channel reduced radius,

ρc = κcR, κc =
√

2μ(Qα − Ec)

h̄2 . (2.11)

Let us mention that at large distances the potential becomes
spherical (Vd → 0) and purely Coulombian. The external
solutions in each channel c can be found by superposition,

ψ (ext)
c (R) =

N∑
a=1

H(+)
ca (R)Na. (2.12)

Here we have involved the columns of the fundamental matrix
of Coulomb solutions with outgoing Coulomb-Hankel asymp-
totics,

H(+)
ca (R) = Gca(R) + iFca(R) −−−→ [R → ∞] δcaH

(+)
Lc

(R)

= δca

[
GLc

(R) + iFLc
(R)

]
, (2.13)

where c denotes the channel and a is the resonant eigenvalue
index. Inside the Coulomb barrier, its modulus practically
coincides with the real matrix of irregular Coulomb solutions
|H(+)

ca (R)| ≈ Gca(R). The unknown coefficients Na are called
scattering amplitudes.

From the continuity equation one obtains the total decay
width as a sum of partial widths [18],

� =
∑

c

�c =
∑

c

h̄vc lim
R→∞

|fc(R)|2

=
∑

c

h̄vc|Nc|2, (2.14)

depending on scattering amplitudes and asymptotic velocities
vc = κc/μ. By inverting Eq. (2.12) and using (2.14), the
external components of the wave function at some point R
inside the α-daughter potential can be expressed as

ψ (ext)
c (R) =

N∑
a=1

H(+)
ca (R)

√
�a

h̄va

, c = 1, . . . ,N, (2.15)
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in terms of the partial decay widths �a and asymptotic channel
velocities.

Let us mention that for the spherical one-channel limit with
Lc = 0, by considering the matching condition ψ (int)(R) =
ψ (ext)(R), Eq. (2.15) becomes the well known relation

�0 = h̄v0

[
ψ

(int)
0 (R)

G00(R)

]2

. (2.16)

Microscopic calculations within the mean field plus pairing
approach evidenced that the α-formation amplitude has a
shifted Gaussian shape with a maximum located beyond
the nuclear surface [18] and is mainly concentrated in the
monopole component. Moreover, this conclusion is supported
by a systematic phenomenologic analysis of all particle/cluster
emission processes [19]. Our coupled channel analysis con-
firmed such a behavior for the internal part of resonant solutions
[12],

ψ
(int)
0 (X) = A0

√
1

N

√
β0

π
e−β0X

2/2, (2.17)

where X = R − R0 is the shifted radial coordinate and N
is the number of channels. Here, A0 denotes the cluster
amplitude and β0 is the harmonic oscillator (ho) parameter
of the monopole component,

β0 = 1

b2
0

= mαω0

h̄
= f h̄ω0,

f ≡ mαc2

(h̄c)2
∼ 0.096 (MeV−1 fm−2), (2.18)

which can be written in terms of the ho length parameter b0.
Here we considered that for heavy nuclei one has μ ≈ mα .
This wave function is generated by a shifted ho α-daughter
local potential,

V
(int)

0 (X) = v0 + 1

2
h̄ω0β0X

2. (2.19)

We match this potential to a realistic external interaction.
We considered in our analysis the double folding α-nucleus
potential computed by using an M3Y nucleon-nucleon plus
Coulomb proton-proton interaction [12]. The parameters are
determined from α-scattering experiments. For the α particle,
we assumed a Gaussian distribution withbα = 1.19 fm [20,21].

Let us match the internal shifted ho potential to the
monopole component of the external double folding potential
V0(R) and do the same for the wave function. Doing so, we can
determine the unknown coefficients v0, β0, and R0, by means
of the following matching relations:

v0 + 1

2f
β2

0X2
m = V0(Rm), Xm = Rm − R0,

1

f
β2

0Xm = V ′
0(Rm),

ln′ ψ (int)
0 (Xm) = −β0Xm = ln′ ψ (ext)

0 (Rm). (2.20)

In the standard coupled channels procedure we fix the Q value
by using v0, thus obtaining from the first two equations the

equality

Xm = 2[V0(Rm) − v0]

V ′
0(Rm)

, (2.21)

which determines the ho parameter β0.
In our analysis, the Q value is given by experimental data

and therefore one directly obtains the ho parameter and Xm

from the last two equations,

β0 = − f V ′
0(Rm)

ln′ ψ (ext)
0 (Rm)

= − ln′ ψ (ext)
0 (Rm)

Xm

=
√

f V ′
0(Rm)

Xm

. (2.22)

We fix the matching radius at the second internal turning
point Rm = Rint. This choice ensures the existence of a narrow
resonance corresponding to the first eigenvalue in the ho pocket
with Q − v0 ∼ 1

2 h̄ω0. Thus, one determines β0 and Xm, and
therefore the equilibrium radius R0. The value of v0 is given
by the first equation (2.20).

Due to the centrifugal barrier in each channel with angular
momentum L, the channel wave functions will be given by
Gaussians with slightly different ho parameters

ψ (int)
c (X) = Ac

√
1

N

√
βc

π
e−βcX

2/2. (2.23)

The ho parameters and amplitudes will be determined by the
standard matching conditions

βc = − 1

XM

ln′ ψ (ext)
c (Rm),

Ac = ψ (ext)
c (Rm)

√
N

√
π

βc

eβcX
2
m/2. (2.24)

External components have much smaller values than internal
components in the internal region R ∈ [0,Rm]. Therefore the
α-particle spectroscopic factor is given by

Sα =
∫

|�(R)|2dR ∼
∑

c

A2
c ≡

∑
c

Sc. (2.25)

III. NUMERICAL APPLICATION

We first analyzed the above defined resonant eigenstates in
the pocketlike α-core potential. In Fig. 1 we plotted a typical
spectrum of resonant states for the transition 144Nd → 140Ce +
α. This system was under scrutiny in Ref. [22].

The first resonant zero node state has the eigenvalue E0

corresponding to the Q value of the process, drawn by the lower
solid line. Obviously, the experimental decay width between
ground states is reproduced.

Lower solid and dotted lines are eigenstates in the parent
nucleus with JP = 0+, described by coupling the low-lying
eigenstates of the daughter nucleus with α-particle states
[L ⊗ L]0 in Eq. (2.4). Each eigenstate has one L-dominant
component with a probability depending on deformation. Its
energy contains the daughter energy Ec plus centrifugal α-
particle energy plus a coupling correction term. We considered
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FIG. 1. Vibrational resonant states (solid lines) and rotational
bands built on them (dotted lines) in the α-140Ce molecular potential.
The lower solid line corresponds to the Q value of the process. The
dot-dashed line is ten times the ratio ρ(R)/ρ0 and the dashed line
shows a factor 20 multiplying the gs α-particle probability vs radius.

experimental energies of the daughter nucleus in the coupled
system of equations (2.9) and (2.10). A systematic analysis
of their B(E2) values is given in Ref. [12]. In Ref. [10], we
have shown that for 212Po the low-lying 0+α-like resonances
(except gs) have small spectroscopic factors and they can
be experimentally detected only above 6 MeV. We expect
similar properties for low lying monopole resonances plotted
by dotted lines in Fig. 1. Therefore, they cannot be detected
experimentally and the 0+ states observed around 2 MeV in
144Nd have a different nature. The upper solid line denotes the
eigenvalue E1 of the first one-node excited vibrational state
and the dotted lines above it belong to the excited monopole
band with JP = 0+. The decay width �0 in Fig. 1 is given
by the barrier penetration �pen = 5 × 10−41 keV multiplied
with the spectroscopic factor Sα = 0.125 and it reproduces the
input experimental value �exp = 6.3 × 10−42 keV. Moreover,
our numerical estimate gives a ratio between errors δ�1/δE1 =
0.16.

Obviously, the energy difference �E = E1 − E0 deter-
mines the ho parameter of the molecular potential. We plotted
the wave function multiplied by a factor of 20 with a dashed
line, and with a dot-dashed line the ratio between the nuclear
and equilibrium density multiplied by 10,

ρ(R)

ρ0
= 1

1 + exp[(R − Rn)/a]
, (3.1)

by considering a standard diffusivity parameter a = 0.5 fm and
nuclear radius Rn = 1.2A1/3. These standard values are close
to the systematics of Ref. [23] based on electron scattering data.
Let us mention that the Mott phase transition point between
the nucleonic and α-clustering phases corresponds to about
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FIG. 2. Monopole ho length parameter vs neutron number of the
daughter nucleus (a) and vs the ratio between the energy difference
of vibrational levels and fragmentation potential (b) for even-even
emitters. The symbols denote different regions of the nuclear chart,
divided by magic numbers. The regression line in panel (b) fits the
data, excepting the first region (dark squares).

10% of the equilibrium density in infinite nuclear matter [13]
and 20% for 212Po, as seen in Fig. 5 of Ref. [14]. Thus,
our calculation confirms that the maximal value of the wave
function corresponds to a radius larger than the phase transition
point.

As we mentioned, the rotational quasimolecular band is
connected to the ALAS phenomenon. In Ref. [24] was pointed
out that the experimental evidence of this effect was found
for a lighter configuration with Z = 40, namely α + 90Zr.
Anyway, one sees from Refs. [25,26] that for the configuration
analyzed above, α + Ce with Z = 58, the ALAS phenomenon
disappears close to the Coulomb barrier VC ∼ 16 MeV, due to
the fact that exchange effects diminish for Z > 50.

In Fig. 2(a), we plotted the ho length parameter b0 of
the gs channel with L = 0 versus the neutron number of
the daughter nucleus for 162 even-even emitters. Notice that
b0 ∈ [0.6,0.8] fm, i.e., the ratio to the standard α-particle
length parameter bα = 1.19 fm belongs to a rather narrow
interval b0/bα ∈ [0.5,0.7]. In the lower panel (b), we plotted
the length parameter versus the ratio between the energy
difference of vibrational levels �E = E1 − E0 and the frag-
mentation potential Vfrag = VC(Rmax) − Q. Notice that Vfrag ∈
[10,17] MeV. Except for the first region, Z ∼ N ∼ 50 of
“superallowed” α transitions [27], these quantities are linearly
correlated. For nuclei with b0 > 0.75 fm, the rotational band
built on the first excited state lies close to the Coulomb barrier
�E/Vfrag ∼ 1 and therefore it can be seen as a structure of
maxima in the energy dependent cross section. The linear
correlation between the length ho parameter b0 and the ratio
�E/Vfrag gives predictive power to this parametrization of
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FIG. 3. Spectroscopic factor vs neutron number of the daughter
nucleus for even-even emitters. The symbols denote different regions
of the nuclear chart divided by magic numbers.

the internal pocketlike potential, because the fragmentation
potential is experimentally determined and �E is directly
related to b0. The regression line in Fig. 2(b), fitting the data
excepting the first region (dark squares), gives a mean error
〈δb0〉 = 0.03 fm.

In Fig. 3, we plotted the spectroscopic factor (2.25) versus
the neutron number of the daughter nucleus. We notice large
values above the magic numbers Z = 50,82 and N = 82,126,
where α molecules are born with significant probabilities
[12] and the best candidates for experimental detection have
�E/Vfrag ∼ 1.

The fine structure of odd-mass emitters was measured
for Z ∈ [87,100]. Here, one obtains b0/bα ∈ [0.6,0.7] and
�E/Vfrag ∈ [0.8,1.0]. Additionally, the L = 1 angular mo-
mentum of the emitted α particle is allowed. Thus, the lower
and upper vibrational eigenstates in the pocketlike potential
of Fig. 1 can be connected by a dipole operator D ∼ X =
R − R0 of the α-particle center of mass. Therefore, the second
vibrational state can be detected in the excitation function of
an incident γ beam. Such beams are produced at operating
γ -beam facilities, and will be provided in the future at the
ELI-NP facility [28].

The total absorbtion energy-integrated cross section for the
transition between the first n = L = 0 and second vibrational
levels n = L = 1 in the shifted ho potential can be estimated
in a standard way as a function of the ho length parameter,

σ = σ0

[
1 +

(
b0

Rn

)2
]
,

σ0 = 8π3

3

h̄c

mαc2
e2
α ∼ 250 MeV mb. (3.2)

250
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256

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 4. Absorbtion energy-integrated cross section vs the ho
length parameter given by Eq. (3.2) for r0 = 7 fm.

In Fig. 4 we plotted the dependence of the energy-integrated
cross section versus the ho length parameter. It has significant
values, σ ∼ σ0 ∼ 250 MeV mb, which can be detected experi-
mentally. Let us mention that this kind of α-like resonance was
recently analyzed in Ref. [29] within a semiclassical approach.
There, the coupling with GDR and pygmy modes was con-
sidered, and the EWSR was estimated. It was concluded that
the alpha mode exceeds the pygmy EWSR fraction even for a
relatively large neutron excess. The experimental signature of
the α-like state is a larger α-decay width.

IV. CONCLUSIONS

We have shown that it is possible to determine the shape
of the α clusters on the nuclear surface by using as input data
partial decay widths. We matched the logarithmic derivatives
of the external wave function components to internal Gaus-
sian wave functions corresponding to a shifted ho α-nucleus
interaction and determined the ho parameter and equilibrium
radius. The equilibrium radius is slightly larger than the Mott
transition point from nucleonic to the α-cluster phase in finite
nuclei. We predict that the first excited vibrational resonant
state in the quasimolecular α-daughter potential is close to the
Coulomb barrier for nuclei with b0 > 0.75 fm and therefore
its rotational band can in principle be evidenced as a structure
of maxima in the α-particle scattering cross section. The
associated ALAS phenomenon diminishes due to the hindrance
of the α-exchange effects. Moreover, the dipole excitation of
the n = L = 1 state by γ rays in odd-mass emitters would
provide an additional proof for the existence of α molecules in
heavy nuclei.
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