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INTRODUCERE. OBIECTIVE GENERALE.

Obiectivele principale pe care le avem in vedere in cadrul acestui proiect sunt:

0.1 Descrierea unor modele matematice pentru diferite procese economice si biologice precum: cooper-
area gi competitia mai multor jucatori pe o piatd, managementul sustenabil al unei zone turistice,
transmiterea informatiei prin axonul unui neuron biologic, deregliri sistemice in schizofrenie, ete.

0.2 Studiul proprietétilor de stabilitate si fenomenele de bifurcatie ce apar in anumite sisteme dinamice
descrise de ecuatii diferentiale cu intarzieri sau ecuatii cu derivate fractionare, avand in vedere
aplicatii in economie si biologie, cu precadere in contextul mentionat mai sus.

0.3 Efectuarea unor simulari numerice pentru validarea rezultatelor teoretice obtinute.

PLANUL DE CERCETARE
ACTIVITATI REALIZATE IN ETAPA INTERMDIARA 2.

In a doua etapa a derularii proiectului, In conformitate cu rezultatele obtinute in etapa anterioara, am
realizat urmatoarele activitati:

A.2.1 Analiza stabilitatii celor patru punte de echilibru determinate in etapa 1 pentru modelul de tip
Cournot [1, 2, 3, 4, 5, 6] cu intarzieri distribuite, ce descrie cooperarea gi competitia mai
multor jucatori pe piata:
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unde parametri sunt reali si pozitivi, iar nucleele k;(t) reprezinta densitati de probabilitate cu media
Tiy = m

Cele patru puncte de echilibru ale sistemului (1) sunt:
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Toate aceste puncte de echilibru au componentele pozitive daca si numai dacé are loc inegalitatea
de mai jos:
(I):  a>max{2c; — c2,2¢c0 — 1 }.
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Liniarizand in vecinatatea fiecirui punct de echilibru si analizdnd ecuatiile caracteristice core-
spunzatoare (formulate cu ajutorul transformatelor Laplace ale nucleclor k;), am obtinut urmatorul
rezultat:

Propozitia 1. Dacd inegalitatea (I) are loc, punctele de echilibru Ey, Ey si E3 ale sistemului (1)
sunt instabile, indiferent de alegerea nucleelor de intdrziere k;, i = 1,4.

Utilizand Teorema lui Rouché, am obtinut urmatorul rezultat:

Propozitia 2. Daca inegalitatea (I) are loc si k1(t) = ka(t) = 6(t) (adicd intdrzieri apar doar in
termenii ce descriu influenta competitorului in cele doua ecuaii ale sistemului), punctul de echilibru
Ey al sistemului (1) este asimptotic stabil, indiferent de alegerea nucleelor de intirziere k;, i = 2, 3.

Toate aceste rezultate generalizeaza rezultate obtinute anterior [4], oferind de asemenea si
demonstratii mai simple si mai elegante. In cele ce urmeaza, in ctapa finala, ne propunem sa
investigdm stabilitatea punctului de echilibru E4, precum si aparitia fenomenului de bifurcatie de
tip Hopf in vecinatatea acestui echilibru, considerand diverse scenarii:

— nuclee de intarziere egale: k;(t) = k(t), i = 1,4;
— intdrzieri prezente doar in prima ecuatic a sistemului: k3(t) = kq(t) = 5(t).

Analiza stabilitatii locale si a fenomenelor de bifurcatie in vecinatatea punctelor de echilibru pentru
modelul matematic cu intarzieri ce descric managementul sustenabil al unei zone turistice:
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unde T'(t) este numarul de turigti la momentul ¢ intr-o anumita locatie, E(t) reprezinta calitatea
mediului inconjurator, C(t) fluxul de capital destinat pentru activitatile turistice, A;(E) este
atractivitatea mediul, A, (Tgﬁ) atractivitatea infrastructurii per capita. In plus, toti parametri
sunt reali i pozitivi. Modelul (2) reprezinta o generalizare a modelului matematic cu intarzieri
discrete explorat in [7] si extinde modele prezentate in [8, 9, 10, 11]. Utilizarea intarzierilor
distributite s-a dovedit a fi mai riguroasa in modelarea fenomenelor in care estimarea intarzierilor
care apar este dificila sau inexacta [12, 13, 14].

in etapa intermediara anterioara au fost determinate cele patru puncte de echilibru ale sistemului
(2) si s-a demonstrat pozitivitatea solutiilor sisternului. Investigarea stabilitdtii locale pentrn
fiecare echilibru in parte a fost realizatd prin constructia sistemului liniarizat si analiza ccuatici
caracteristice rezultante. Am aratat ca punctele de echilibru care au cel putin o componentd nula
sunt instabile indiferent de alegerea nucleului de Intéarziere h(t), in cazul in care parametri sistemului
indeplinesc anumite conditii ugor interpretabile. Pe de altd parte, echilibrul cu componentele strict
pozitive este asimptotic stabil doar pentru o intarziere medie suficient de mica. Valoarea critica a
intarzierii medii unde echilibrul pozitiv isi pierde stabilitatea asimptotica corespunde unei bifurcatii
Hopf supercritice. In cazul unei intérzieri discrete, analiza criticalitatii bifurcatiei de tip Hopf s-a
realizat prin reducerea la varictatea centrald si determinarca formei normale (a se vedea Anexa
1, varianta preliminara a unui articol stiintific ce urmeaza a fi redactat in forma finala in etapa
urmatoare si trimis spre publicare la Analcle AOSR).

Investigarea modelului de ordin fractionar de tip conductanta ce descrie transmiterea informatiei
prin axonul unui neuron biologic:

{CD!]lU(t) =] — I(U,U)) (3)
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unde v(t) reprezinta potentialul membranei neuronale, w(t) este o variabila de recuperare, iar
¢1,92 € (0,1) reprezinta ordinele derivatelor fractionare de tip Caputo. Modelarea acestor fenomene
de la nivelul membranei neuronale se bazeazd atit pe rezultate experimentale obtinute recent
(15, 16], cit si pe rezultate numerice raportate in [17, 18] pentru modele de ordin fractionar de
tip Hodgkin-Huxley. In colaborare cu Drd. Oana Brandibur (Universitatea de Vest din Timigoara)
am obtinut rezultate ce privesc conditii necesare si suficiente pentru stabilitatea asimptotica si
instabilitatea sistemelor liniare bidimensionale de ecuatii cu derivate fractionare de tip Caputo.
Aceste rezultate teoretice extind rezultatele prezentate in [19, 20] si au fost aplicate in aceasté etapa
la investigarca modelului (3). Rezultatcle obtinute au fost incluse intr-un capitol invitat spre
publicare in volumul ” Current Trends in Fractional Calculus and Fractional Differential
Equations” (editor: Prof. Varsha Gejji) ce va fi publicat la editura Springer. Capitolul
finalizat In urma celei de-a doua runde de recenzii este atasat in Anexa 2.

ACTIVITATI PLANIFICATE PENTRU ETAPA URMATOARE

Avand in vedere rezultatele obtinute in primele doud etape, in urméatoarea etapa vom urmari urmatorii
pasi, cu scopul de a indeplini obiectivele asumate:

e Finalizarea analizei fenomenelor de bifurcatie de tip Hopf si a altor tipuri de bifurcatii ce apar in
vecinatatea echilibrelor sistemelor (1)-(3) descrise in Raportul 1.

e Realizarea unor simulari numerice pentru validarea rezultatelor teoretice obtinute.

Comparatia rezultatelor obtinute cu rezultate furnizate de modele mai simple, si investigarea
influentei intarzierilor distribuite si a derivatelor de ordin fractionar in analiza calitativa si
cantitativa a acestor sisteme.

Interpretarea rezultatelor obtinute din perspectiva fenomenului economic sau biologic modelat.
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1 Introduction

Nowadays the tourism industry has been expanded at global scale well beyond any prediction made in
the past and became a well established industry alongside the traditional ones. It is an activity done
by a person or a group of persons involving movement of people, goods and services from one place to
another over geographical distributed areas (Zahra et al.). The other side of the coin is linked to the
negative impact over the the natural environment and resources. These must be kept under a close eye
by all the factors involved in this industry. In order to study, analyze and predict the behavior of the
factors describing this complex system, an efficient approach is the mathematical modeling.

Casagrandi and Rinaldi (2002) introduced a minimal model containing the core features of several systems
with three main elements like: tourists, environment and tourist facilities. The findings show that the
sustainable and profitable tourism is a reachable goal as long as the economic agents expand carefully
while observing an environmental friendly policy. Also, the link between the sustainability and the
bifurcation theory is highlighted.

The model by Casagrandi and Rinaldi (2002) was used by Lacitignola et al.(2007) and Wei et al. (2013).
Lacitignola et al. analyzed its implementation for a real tourist destination taking into consideration the
two main tourist categories (mass and eco-tourists). The results are presented in terms of bifurcation
theory. Wei et al. presented a stability analysis, where various scenarios are analyzed having different
investment parameters.

Afsharnezhad et al. (2017) studied the existence of transcritical, pitchfork and saddle-node bifurcation
points of system for a similar mathematical model as the previous ones with the coexistence of two main
tourist classes.

In this paper, based on the existing minimal model of a given generic touristic site, we introduce the
discrete time delay in the number of tourists while studying its effect in terms of bifurcation and normal
forms theory.



2 Mathematical model

The minimal model for a generic site has three variables as follows: x1(t) the number of tourists at time
t, xo(t) stands for the quality of the natural environment and z5(¢) is the capital flow of the tourist
activities and should be dissociated from the flow of offered services for tourists.

It can be identified a two way positive influence between tourists (z1(t)) and capital flow (z3(t)). In the
same time, they influence in a negative manner the quality of the natural environment, but the upside
of this is the increased number of tourists.

In Casagrandi and Rinaldi (2002), the rate of change of tourists is considered as the product between the
attractiveness of the site and the number of tourists:

G1(t) = 21 (D) A (21(8), 22(t), 23(t)) -

The attractiveness A(z1,x2,x3) is the algebraic difference between the absolute attractiveness and a
reference value a (Casagrandi and Rinaldi (2002)):

. z3(t) ) ]
T1(t) =21 (2 z1(t)) + —— | —az1(f) —a
10 =220 | @) + 12 (500 ) =~ a0
where o > 0 is the congestion parameter and the functions f; and fs are given by Casagrandi and Rinaldi
(2002):
x

fi(z) :#im
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where p;,0; > 0.
In Casagrandi and Rinaldi (2002) the rate of change of the environment is given by:

salt) = raa(0) (1= 2 ) = a0 (0) + 1 (0)

where the first term represents the quality of environment in the absence of tourists and capital and
the second term is the flow of damages induced by tourism. The parameter r > 0 is the net growth
rate, K > 0 is the quality of the environment in the presence of all civil and industrial activities (except
tourism) of the generic site. The two parameters 7,v are positive. We assume that the quality of the
environment at time ¢, x1(t), depends on the number of past tourists:

) = ran(®) (1= 2 ) = s a(0) s 0= 7).

where the positive parameter 7 is the time delay.
In Casagrandi and Rinaldi (2002) the rate of change of the capital flow is given by:
l’g(t) = &Tl(t) - 5%3@),

where the first term is the investment flow and the second one is the depreciation flow. The positive
parameter € is the investment rate and ¢ is related to the degradation of tourist structures thought to be
very slow and therefore it is a very small positive parameter. We assume that the capital flow at time ¢,
x1(t), depends on the number of past tourists:

2Z3(t) = exq(t — 1) — dxs(¢),
where the positive parameter 7 is the time delay.

As the summary of the aforementioned considerations, the associated mathematical model of a generic
touristic site is given by:



£1(8) = 1 (A (1 (8). 2a(8). 25(1)
salt) = rea(®) (1= 20) — aa(0)a(t) + 910 - 7) )

SCg(t) = Ellil(t — T) - (5133(t)

There are the following equilibrium states for system (2):

S
SO = (07070)a Sl - (07K7 O)a SQ - (Z‘l0,0, 3x10)7

where x19 = 7 (n% + 7)_1. Moreover, at least one strictly positive equilibrium state of (2) exist if and
only if the following equation has at least one strictly positive solution:

5323 + 5922 + 512 + 59 = 0, (3)
where:
s3 = kajasq, s5 = —ad(rasas — kaips) + kajas(a — pr k) — kay poe,
51 = —aazrd?ps — alazasrd — kai1dps) + azrdeps + p1k(rdas — a1dps),
so = (uirk — aaz)ré?ps
and

a1 =mne +v0,a2 =6pa+¢€,a3 = 1 + k.

3 Hopf bifurcation analysis

By carrying out the translation y;(t) = z1(¢) — z10, y2(t) = x2(t) — @20, y3(t) = x3(t) — 30, from (2) we
get the system:

i (t) = fi(ya (), v2(t), ys(t)),
Y2(t) = f2(y2(t = 7), p2(t), ys (1), (4)
y3(t) = fs(ya(t — 1), 3(2)),
where (s 5
Gl (n;j g )xlo)’mgo _ em% 5)
and x19 is a positive solution of (3) and
1 (y2 + 220) H2(ys + x30)

fi(yr,y2,y3) = (y1 + x10) < —ay1 —10 —a)

Y2 + 02+ 220 Y3+ p2y1 + @2(x10 + 1) + T30
fo(yi(t —7),92,y3) = (y2 + x20) (1 — 7k(y2 + 220) — N(y3 + 230 — 1 (Y1 (t = T) + 10)))
fa((t —7),y3) = ey (t —7) — 0(ys + x30)-

The linearized of (4) in (0,0,0)7 is given by:

(t) = Au(t) + Bu(t — 1), (6)
where u(t) = (uy(t),ua(t),uz(t))? and
air a2 a3 0 0 0
A= 0 22 Q23 y B = b21 0 0
0 0 ass b31 0 0



where

a1, = H1iT20 H2T10T3042 %01 —a, @1z =10 ( Hroo o 120 )
01+ x20  (p2(z10 + 1) + 230)? w1+ 220  (p1 + 220)?
a13 = T10 < f2 - F2750 ) y Q22 =T — 2riva — N30 — Y1210,
(,02(5610 + 1) “+ Z30 @2(1‘10 + 1) + $30)2 k
a3 = —NT20, G33 = —0, ba = —Y1%20, bz =¢, bz =0.

The characteristic function for (6) is given by:
h(/\, ’7') = ()\ — au)()\ — agg)()\ — a33) — (mu)\ + mlo)e_)‘77 (7)

where
mi1 = ai2bar +a13b31, Mig = a12a23b31 — a13a22b31 — aiza33bo;.

In what follows, we suppose that:
Hj : The equation h()\,0) = 0 has the roots with a negative real part;

Hj : There exists a critical time delay denoted by 7y such that the roots of h(A,7) = 0, A12(70) =
+iwg(wo > 0) and the the others eigenvalues have negative real part at 7 = 79;

d)\l 2\T
Hs : Re (Cé()h_n,) # 0.
T
For the existence of Ha, we suppose there exists a pair of imaginary roots for h(A,7) = 0, i.e.,

A =iw(w > 0). We obtain:
(a11 —+ a22 —+ a33)w2 — a11a22a33 — M10 COS(T) — mi SiH(WT) — z(wdf (8)
— w(agzass + arrage + a11as3) + myy cos(wr) — mygsin(wr)) = 0. (9)
Separating the real and imaginary parts, we have:
(0,11 + as2 —+ a33)w2 — 11022033 = M1 COS(WT) =+ miiw SiH(WT), (10)
w3 = (agea33 + a11a22 + aj1azz)w = Moy sin(wr) — myyw cos(wr). (11)

Eliminating sin(w7) and cos(wT) from (10) we obtain:

w8 + paw? 4 paw? + py = 0, (12)
where
pa = (a11 + ago + azs)® — 2(a11a22 + ar1azs + azass), (13)
P2 = —2(a11 + a2 + asz)a11a22a33 — mfl + (a11022 + ai1a33 + a22a33)2, (14)
Po = a%ﬂgz - mgr (15)

Let wy be a positive root of (12). The critical value of the delay is:



(w%(an + a9 + a33) — a11a22a33)m01 + wo(wo(a11a22 + ai1ass + a22a33) - wg)mu

cos(woTy) = (16)
mg; +mi Wy
From (18) we have:
1 A
_ a 17
7o o arccos <B> (17)
where
A= (w3(a11 + ax + azz) — ar1a2a33)moe1 + miiwo(wo(ar1ass + a11ass + azeass) — wS (18)
B= m§ +miwp
Let A = A(7) be a solution of the equation h(A(7),7) = 0. Differentiating with respect to 7, we have:
d)\(T) o (mllA(T) + m01)e*)‘(7)7 (19)
dr 3M71)2 = 2¢2\(7) + 1 — mi1e= 27 £ (my N(7) + Mgy )Te AT
where
q2 = a11 + a2 + ass, q1 = a11Q22 + a11a33 + a22a33.
Relation (19) can be written as:
d\(T) A +iAy
7‘7:1&10,7:70 = 75 . (20)
dr B1 4+ 1By
where
Ay = —wo(womyi cos(woTy) — Mmo1 sin(woTo)),
As = wo(mor cos(woTy) + womai sin(we)),
2 : (21)
By = =3wi+ g1 + 1o(woma sin(woTo) + mo1 cos(weTo)),
BQ = 72(]2&)0 —+ To(w0m11 COS(on()) — Mop1 Sin(wOTo)).

We denote by:

dA(T)) e _AB A AB <d>\(7)> e _ AyBy — A1B,
=1Wo,T=T0 ~— ’ - dT =W, T=T0 ~—_

M=%R(—2=
( dr B? + B3 B? + B3

If wy is a positive root of (12), 7 = 19 and M # 0, then the Hopf bifurcation exist for system (2).

4 Stability of the limit cycle

In this section, we compute the Lyapunov coefficient that gives us information about the stability of the
cycle when it exists. First we transform system (4) with 7 = 79 + u, p > 0 into an equation of the form

¢ = A()ys + R(pe) (22)

{ d‘i’l—(eﬁ, 0 €[-71,0)
Ap(0) + Bop(—7), 6 =0

where ¢ € C1([—70,0],C?), A, B are given by (19) and

A(p)o(0) = (22)



0,0,0)7, 6 € [-7,0)
R , 9 — ( ) ) b b 22
(k. 9(6)) { (Fy(1,0), Fa(1,0), Fy(11,6)T, 6 =0 (22)
Fi(p,0) = axom? + 2a110mims + 2a101mims + agom3 + agoem3—+
+3az01mims + azoomi + apzomi + agosmi + 3ai20mimi+
+3a1g92m1 mg where
Fy(p,0) = boaom3 + 2bg11mams + 2di10mams
Fs(p,0) = 0
00 = — 2u223002 P 2127103093
((z10 + 1)p2 + 30)? ((z10 4+ 1)p2 + x30)3’
G — 21210 2141210220
020 = — ;
(w20 +¢1)* (1 +>20)3
1o = H1T10 2u1210T20
((z20 +1)? (1 +220)
A 21210 N 201221030
002 = — ,
(((z10+ D)1 +230)%  (p2(w10 + 1) + 30)3
- f2 B 230 _ H2T10P2 22101273002
(10 + )2 + 230 @a(@10+ 1) +x30)2  @a(@io + 1) +230)2 om0 + 1) + 230)3’
190 = — H1 2120
((z20 +¢1)? (1 +w20)%’
Gy — 210 4 212230 n 4p22102 6x10p223092
102 = _ :
(104 )2 +230)%  @a(z10+ 1) +230)%2  @a(zio+1) +230)2  a(z10+1) + 230)*
I 612710 Gu2z10230
003 = - ;
(((x10 4+ 1) ;— x30)%  (p2(z10+1) +39630)4
500 — Bp23003 ~ Bpamiozsopy
((z10 + )pa +x30)°  ((x10 + 1) + 230)*
ot — 21202 43002 + 2T 101203 L2107 303
201 = — _ 7
((z10 + 1)p2 + 30)? @a(z10 + 1) + 230)3 o(x10 + 1) + 30)*
r
bo2o = *?717011 = —n,d110 = —7.
We consider ¢ € C1([0, 7], C?) and the adjoint operator A* of A defined as:
dy(s) 0
A* = ——as 0§ € [ ’T)
e ={ i S
For ¢ € CY([-7,0],C?) and v € C1(]0, 7], C?) we define the bilinear form:
0 0
<00>= 0070 - [ [ 3T on@)s(s)as (22)
O=—71 Js=0

where n(0) = B&(6 + 1) for § € [—7,0) and § is the Dirac distribution.

Using (22) and (22) we obtain:
Proposition 1. 1. The eigenvector ¢ of A associated with the eigenvalue A1 =i wy is given by

o(0) = meM?, 6 € [-T,0]

where
m = (m1,mz,m3) ", m1 = —ai2(iwy — az3), ma = bararze”“°™ — (iwy — an)(iwy — azz),
ms = —aqabze”"W070,

2. The eigenvector ¢ of A* associated with the eigenvector Ay = A1 is given by

P(s) = leMs, s e [0, 7],



where
= (ll7l2a l3)T7

li = (iwo — age)(iwo — ass),le = ai2(iwg — asz),l3 = a12a23 + a13(iwe — as2).
3. With respect to (22) we have

< P(s), 9(0) >= €11, <YP(s),d(s) >= e12, < P(s), P(0) >= a1, < YP(s),P(0) >= ea

where
enn = Limy + lamag + lama + e~ *0™0my (barly + bz lh) _ .
e12 = (iwp + ag2)(iwo + asz)li — ai2(iwo + asz)ly — a12b31€*°™ 13 — 79~ (balaly + bailil3),
€21 = €12,€22 = €11.
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Stability analysis of two-dimensional
incommensurate systems of fractional-order
differential equations

Oana Brandibur, Eva Kaslik

Abstract Recently obtained necessary and sufficient conditions for the asymptotic
stability and instability of the null solution of a two-dimensional autonomous linear
incommensurate fractional-order dynamical system with Caputo derivatives are re-
viewed and extended. These theoretical results are then applied to investigate the sta-
bility properties of a two-dimensional fractional-order conductance-based neuronal
model. Moreover, the occurrence of Hopf bifurcations is also discussed, choosing
the fractional orders as bifurcation parameters. Numerical simulations are also pre-
sented to illustrate the theoretical results.

1 Introduction

Due to the fact that fractional-order derivatives reflect both memory and hereditary
properties, numerous results reported in the past decades have proven that fractional-
order systems provide more realistic results in practical applications [7, 12, 15, 16,
23] than their integer-order counterparts.

Regarding the qualitative theory of fractional-order systems, stability analysis
is one of the most important research topics. The main results concerning stabil-
ity properties of fractional-order systems have been recently surveyed in [20, 30].
It is worth noting that most investigations have been accomplished for linear au-
tonomous commensurate fractional-order systems. In this case, the well-known
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Matignon’s stability theorem [24] has been recently generalized in [31]. Ana-
logues of the classical Hartman-Grobman theorem, i.e. linearization theorems for
fractional-order systems, have been recently reported in [19, 33].

However, when it comes to incommensurate fractional-order systems, it is worth
noticing that their stability analysis has received significantly less attention than
their commensurate counterparts. Linear incommensurate fractional-order systems
with rational orders have been analyzed in [27]. Oscillations in two-dimensional
incommensurate fractional-order systems have been investigated in [8, 29]. BIBO
stability of systems with irrational transfer functions has been recently investigated
in [32]. Lyapunov functions were employed to derive sufficient stability conditions
for fractional-order two-dimensional non-linear continuous-time systems [?].

Following these recent trends in the theory of fractional-order differential equa-
tions, necessary and sufficient conditions for the stability/instability of linear au-
tonomous two-dimensional incommensurate fractional-order systems have been ex-
plored in [4, 5]. In the first paper [4], stability properties of two-dimensional sys-
tems composed of a fractional-order differential equation and a classical first-order
differential equation have been investigated. A generalization of these results has
been presented in [5], for the case of general two- fractional-order systems with
Caputo derivatives. For fractional orders 0 < g1 < g2 < 1, necessary and sufficient
conditions for the &'(+~91)-asymptotic stability of the trivial solutions have been
obtained, in terms of the determinant of the linear system’s matrix, as well as the
elements aj; and ay, of its main diagonal. Sufficient conditions have also been ex-
plored which guarantee the stability and instability of the system, regardless of the
choice of fractional orders g < g». In this work, our first aim is to further extend the
results presented in [5] for any g1, ¢ € (0, 1], by exploring certain symmetries in the
characteristic equation associated to our stability problem. This leads to improved
fractional-order independent sufficient conditions for stability and instability.

As an application, an investigation of the stability properties of a two-dimensional
fractional-order conductance-based neuronal model is presented, considering the
particular case of a FitzHugh-Nagumo neuronal model. Experimental results con-
cerning biological neurons [1, 22] justify the formulation of neuronal dynamics us-
ing fractional-order derivatives. Fractional-order membrane potential dynamics are
known to introduce capacitive memory effects [34], proving to be necessary in re-
producing the electrical activity of neurons. Moreover, [11] gives the index of mem-
ory as a possible physical interpretation of the order of a fractional derivative, which
further justifies its use in mathematical models arising from neuroscience.

2 Preliminaries

The main theoretical results of fractional calculus are comprehensively covered in
[17, 18, 28]. In this paper, we are concerned with the Caputo derivative, which
is known to be more applicable to real world problems, as it only requires initial
conditions given in terms of integer-order derivatives.
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Definition 1. For a continuous function A, with ' € L}M(R+ ), the Caputo fractional-
order derivative of order ¢ € (0,1) of & is defined by

DAp(r) = ﬁ /0 " ) (5)ds.

Consider the n-dimensional fractional-order system with Caputo derivatives

‘DIx(t) = f(t,x) (1)

with q = (¢1,92,..-,¢qn) € (0,1)" and f : [0,00) x R" — R" a continuous function on
the whole domain of definition and Lipschitz-continuous with respect to the second
variable, such that

f(t,0)=0 foranyt>0.

Let ¢(f,xp) denote the unique solution of (1) satisfying the initial condition
x(0) = xo € R". The existence and uniqueness of the initial value problem asso-
ciated to system (1) is guaranteed by the properties of the function f stated above
[9].

In general, the asymptotic stability of the trivial solution of system (1) is not
of exponential type [6, 14], because of the presence of the memory effect. Thus,
a special type of non-exponential asymptotic stability concept has been defined for
fractional-order differential equations [21], called Mittag-Leffler stability. In this pa-
per, we are concerned with & (¢~ %)-asymptotic stability, which reflects the algebraic
decay of the solutions.

Definition 2. The trivial solution of (1) is called stable if for any € > 0 there exists
6 = 6(&) > 0 such that for every xo € R" satisfying ||xo|| < 6 we have ||@(¢,x0)|| < €
for any ¢ > 0.

The trivial solution of (1) is called asymptotically stable if it is stable and there
exists p > 0 such that IILI?Q o(t,x0) = 0 whenever ||xo| < p.

Let o > 0. The trivial solution of (1) is called &'(1~%)-asymptotically stable if it
is stable and there exists p > 0 such that for any ||x|| < p one has:

l@(t,x0)[| = O(™%) ast— oo

3 Stability and instability regions

Let us consider the following two-dimensional linear autonomous incommensurate
fractional-order system:

(@)

{ CDqlx(t) = a”x(l) +a12y(t)
CDq2y(t) = a21x(l) +a22y(t)
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where A = (a;;) is a real 2-dimensional matrix and g1,¢> € (0,1) are the fractional
orders of the Caputo derivatives. Using Laplace transform tools, the following char-
acteristic function is obtained

Ax(s) = det (diag(s7,59) —A) = 1112 — q1157 — azysT 4 det(A).

where s7! and 592 represent the principal values (first branches) of the corresponding
complex power functions [10].

Based on the Final Value Theorem and asymptotic expansion properties of the
Laplace transform [3, 4, 10], the following necessary and sufficient conditions for
the global asymptotic stability of system (2) have been recently obtained [5]:

Theorem 1.

1. Denoting g = min{qy,q>}, system (2) is O (t~1)-globally asymptotically stable if
and only if all the roots of Ax(s) are in the open left half-plane (R(s) < 0).

2. Ifdet(A) # 0 and Aa(s) has a root in the open right half-plane (R(s) > 0), system
(2) is unstable.

Our next aim is to analyze the distribution of the roots of the characteristic func-
tion A4 (s) with respect to the imaginary axis of the complex plane. For simplicity,
for (a,b,c) € R3, q1,¢2 € (0,1] we denote:

A(s;a,b,c,q1,q2) = 17 + as® + bs™ +c.

As in [5], we easily obtain the following result:

Lemma 1. If ¢ <0, the function s — A(s;a,b,c,q1,q2) has at least one positive real
root.

In the following, we assume ¢ > 0 and we seek to characterize the following sets:
S(c) = {(a,b) €R? : A(sia,b,¢,41,42) #0, Vs € C*¥ (q1,q2) € (0,1]%}
Ule) ={(a,b) eR? : ¥ (q1,q2) € (0,1)?, Is € Int(CT) s.t. A(s;a,b,¢,q1,q2) =0}
0O(c) =Int (R2 \ (S(c)UU(c))
where C* = {s € C : R(s) > 0} and (0,1]> = (0, 1] x (0, 1]. Based on Theorem 1

and the previous lemma, the link between the stability properties of system (2) and
the three sets defined above is given by:

Proposition 1. 1. Ifdet(A) < 0, the trivial solution of system is unstable, regardless
of the fractional orders (q1,q2) € (0,1]>.
2. If det(A) > 0, the trivial solution of system (2) is

a. asymptotically stable, regardless of the fractional orders (q1,q2) € (0,1]% if
and only if (—ay1,—azz) € S(det(A)).

b. unstable, regardless of the fractional orders (q1,q2) € (0, 1]2 if and only if
(—ai1,—ax) € U(det(A)).
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c. asymptotically stable with respect to some (but not all) fractional orders
(91,42) € (0,1]% if and only if (—ar, —az) € Q(det(A)).

Lemma 2. Let ¢ > 0. The sets S(c), U(c) and Q(c) are symmetric with respect to
the first bisector in the (a,b)-plane.

Proof. The statement results from the fact that A (s;a,b,¢,q1,q2) = A(s; b,a,¢,q2,q1),
for any (a,b,c) € R® and (q1,¢2) € (0,1]%. O

In the following, we give several intermediary lemmas which are obtained by
generalizing the results presented in [5]. As the proofs are built up in a similar
manner as in [5], they will be omitted.

Lemma 3. Ler ¢ > 0, q1,q2 € (0,1], g1 # g2, and consider the smooth parametric
curve in the (a,b)-plane defined by

a=cpi(q1,q2) 02 — pr(q1,q2) 07!
Fe.qi.q0) p1(q1,92) ’ p2(q1,9 )_q ©>0,
b=pi(q1,92) 07 —cpr(q1,92) 0~
where: o o7
sin 4= sin 42=
_ 2 — 2
pi(q1,92) = i g P2(q1,92) in g7

The curve I'(c,q1,q2) is the graph of a smooth, decreasing, convex bijective function
Ocg1.92 - R = Rin the (a,b)-plane.

Lemma 4. Let ¢ > 0 and q1,92 € (0,1].

a. If g1 # qo, the function s — A(s;a,b,c,q1,q2) has a pair of pure imaginary roots
if and only if (a,b) € I'(c,q1,492)-
All the roots of the function s — A(s;a,b,c,q1,q2) are in the open left half-plane
if and only if b > ¢c.ql,q2(a)'

b. If g1 = q2 := q, the function s — A(s;a,b,c,q1,q2) has a pair of pure imaginary
roots if and only if (a,b) € A(c,q), where A(c,q) is the line defined by:

T
Alc,q) : a+b+2\/Ecosq7 =0.
All the roots of the function s — A(s;a,b,c,q1,q2) are in the open left half-plane

if and only if a+b+2+/ccos 5 > 0.

As a consequence of the previous lemma, the following characterization of the
set Q(c) is formulated:

Corollary 1. The set Q(c) in the (a,b)-plane is the union of all curves I'(c,q1,q2),
for (q1,q2) € (0,1)%, q1 # q2 and all lines A(c,q), for g € (0,1).
Lemma 5. Let ¢ > 0. The region

Ru(c)={(a,b) eR* : a+b+c+1<0}U{(a,b) €R? : a<0,b<0, ab>c}

is included in the set U(c).
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Proof. Let (a,b) € R,(c). First, let us notice that A(1;a,b,c,q1,q2) =a+b+c+ 1.
Hence, if a+b+c+ 1 < 0, it follows that for any (g1,¢2) € (0, 1]?, the function s —
A(s;a,b,c,q1,q2) has at least one positive real root in the interval [1, o). Therefore,
(a,b) €U(c).

On the other hands, if a < 0, b < 0 and ab > ¢, as

A(S;avbacvqlan) = (stl +a)(sq2 —|—b)+c—ab

we see that for so = |a|'/91 > 0, we have A(so;a,b,¢,q1,q2) = ¢ —ab < 0. Hence,
for any (g1,42) € (0,1]?, the function s +— A(s;a,b,c,q1,q2) has at least one strictly
positive real root. It follows that (a,b) € U(c). O

The following lemma is obtained as in [5]:

Lemma 6. Let ¢ > 0. The region
Ry(c)={(a,b) €R* : a+b>0,a>—min(l,c), b>—min(l,c)}

is included in the set S(c).

Based on all previous results, the following conditions for the stability of system
(2) with respect to its coefficients and the fractional orders ¢g; and g, are obtained:

Proposition 2. For the fractional-order linear system (2) with q1,q> € (0,1], the
following hold:

1. If det(A) < 0, system (2) is unstable, regardless of the fractional orders q1,q>.
2. Assume that det(A) > 0 and q1,q> € (0, 1] are arbitrarily fixed and g = min{q,q> }.
If g1 # qo, let ' =I'(det(A),q1,q2), otherwise, if g1 = qa, let I’ = A(det(A),q).

(a) System (2) is O(t~1)-asymptotically stable if and only if (—ay1,—ax) is in
the region above I'.
(b) If (—a11,—axp) is in the region below I', system (2) is unstable.

3. If det(A) > 0O, the following sufficient conditions for the asymptotic stability and
instability of system (2), independent of the fractional orders q1,q», are obtained:

(a) If a1 < min(1,det(A)), azxp < min(1,det(A)) and Tr(A) < 0, system (2) is
asymptotically stable, regardless of the fractional orders q1,q> € (0,1].

(b) If Tr(A) > det(A) + 1 or if a;; > 0, axn > 0 and ajpaz; > 0, system (2) is
unstable, regardless of the fractional orders q1,q, € (0,1].

The fractional-order independent sufficient conditions for the asymptotic stabil-
ity/instability of system (2) obtained in Proposition 2 (point 3.) are particularly use-
ful in the case of the practical applications in which the exact values of the frac-
tional orders used in the mathematical modeling are not known precisely. We con-
jecture that in fact, these conditions are not only sufficient, but also necessary, i.e.
Rs(c)=S(c) and R,(c) = U(c). The proof of necessity requires further investigation
and constitutes a direction for future research.
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4 Investigation of a fractional-order conductance-based model

The FitzHugh-Nagumo neuronal model [13] is a simplification of the well-known
Hodgkin-Huxley model and it describes a biological neuron’s activation and deac-
tivation dynamics in terms of spiking behavior. In this paper, we consider a mod-
ified version of the classical FitzHugh-Nagumo neuronal model, by replacing the
integer-order derivatives with fractional-order Caputo derivatives of different or-
ders. Mathematically, the fractional-order FitzHugh-Nagumo model is described by
the following two-dimensional fractional-order incommensurate system:

3
v
Dly(t)=v———w+1
)=v=3—w+ 3
Dlw(t) =r(v+c—dw)
where v represents the membrane potential, w is a recovery variable, I is an external
excitation current and 0 < g; < ¢g» < 1. For comparison, a similar model has been

investigated by means of numerical simulations in [2].
Rewriting the second equation of system (3) it follows that:

lv+£fw) =¢(av+p—w)

Dew(t) = rd(Zv+ 5

1
where ¢ = rd € (0,1), ot = p and f = 2 Thus, system (3) is equivalent to the

following two-dimensional conductance-based model:

{CD‘“v(t) =1—I(v,w)

D(t) = O (wer(v) — ) @

3
where I(v,w) =w—v+ % and we(v) = av+ B is a linear function.
4.1 Branches of equilibrium states

For studying the existence of equilibrium states of the fractional-order neuronal
model (4), we intend to find the solutions of the algebraic system

{1 =I.(v)
W= Weo(V)

3 3

L(9) = 10w () = W (0) =4 - = (@ = L)y + 5 +B.

where
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We observe that L. € C!, Em I.(v) = —e and le L.(v) = co. Moreover,
A4 —o0 V—po0

I.(v) = v* + a — 1. Therefore, we can distinguish two cases: @ > 1 and « < 1.
The case a > 1 has been studied in [4] and corresponds to the existence of a unique
branch of equilibrium states. In this paper, we will focus on the case when o < 1.

For o < 1, the roots of the equation I, (v) = 0 are vpmax = —v/1 — @ and vy, =
v/1 — a. The function I, is increasing on the intervals (—eo, vinax| and [Viyin,o0) and
decreasing on the interval (Vimax, Vmin ). We denote Lnax = Lo (Vmax )s Inin = Loo(Vinin)-

The function I : (—o0,Vmax] = (=0, x|, is increasing and continuous, and
hence, it is bijective. We denote I} = Iw|(,mﬂvmax] the restriction of function /. to
the interval (—oo, vinax] and consider its inverse:

V11 (=00, Inge] = (=00, vinax],  vi(1) =171 (I).

The first branch of equilibrium states of system (4) is composed of the points of
coordinates (v (1), ne(v1(1))), with I < Iygay.
The second and the third branch of equilibrium states are obtained similarly:

L= Im'(vmax,vmm)a V2 ¢ (bnins Imax) = (Vmax; Vmin),  v2(I) = 151(1)

B=La|py i e)s V35 niny®) = [Vmin,o0),  v3(I) =157 (D).
Remark 1. We have the following situations:

o IfI <1y, orifI > I, then system (4) has an unique equilibrium state.
o IfI =1, orif I = I, then system (4) has two equilibrium states.
o If I € (Iyin,Lnax), then system (4) has three equilibrium states.

4.2 Stability of equilibrium states

For the investigation of the stability of equilibrium states, we consider the Jaco-
bian matrix associated to system (4) at an arbitrary equilibrium state (v*,w*) =

(v, weo (VV)):
J(v) = [1 —(p(‘(;*)z :(ﬂ

The characteristic equation at the equilibrium state (v, w*) is
sNT2 g5 — ayys? +det(J(V')) =0 5)

where
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ajp=1-— (v*)2
apn=-¢<0

THIO) =1 - ()~ ¢
det(J(v")) = 9 IL ().

Considering o < 1, the following results are obtained.

Proposition 3. Any equilibrium state from the second branch of equilibrium states
(2 (I),weo(v2 (1)) (with I € (Iyin,Inax)) of system (4) is unstable, regardiess of the
fractional order q1 and q.

Proof. Letl € (Inin, Inax) and v* =vo(I) € (vq,vg). Then I,(v*) < 0,sodet(J(v¥))
0. From Proposition 2 (point 1), the equilibrium state (v, w*) = (va(I),we(v2(I))
is unstable, regardless of the fractional orders ¢ and ¢;.

<
)

Proposition 4. Any equilibrium state (v¥,w*) of system (4) belonging to the first
or the third branch with |v*| > \/1— ¢ is asymptotically stable, regardless of the
fractional order q1 and q.

Proof. Let (v*,w*) be an equilibrium state belonging to the first or the third branch
of equilibrium states such that |[v*| > /T —¢. So Tr(J(v*)) < 0 and a;; < 1. More-
over, det(J(v*)) > 0 > ap. We apply Proposition 2 (point 3a) and we obtain the
conclusion. 0O

Consider the following two subcases:

4.2.1 Case a € (0, 9]

In this case, the second branch of equilibrium states is completely unstable, regard-
less of the fractional orders ¢ and g, and for the first and third branch of equilibrium
states, the following result is obtained (see Figure 3):

Corollary 2. Any equilibrium state belonging to the first and the third branch of
equilibrium states are asymptotically stable, regardless of the fractional orders g,
and q

Proof. Let (v*,w*) be an equilibrium state belonging to the first or the third branch

of equilibrium states. Then |v*| > v/1 — ot > /T — ¢. From Proposition 4 we obtain
the conclusion. 0O

422 Case x € (¢,1)

In this case, we have the following situations (see Figure 4 and Figure 5):
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e any equilibrium point belonging to the first or the third branch with [v*| > /T — @
is asymptotically stable, regardless of the fractional orders g; and ¢»;

e any equilibrium point belonging to the second branch of equilibrium states is
unstable, regardless of the fractional orders ¢ and g»;

e the stability of any equilibrium point belonging to the first branch of equilibrium
states with v* € [—y/T— ¢, —+/1 — @] or to the third branch of equilibrium states
with v* € [v/1 — a,+/1 — ¢] will depend on the fractional orders g; and g.

5 Conclusions

In this work, recently obtained theoretical results concerning the asymptotic sta-
bility and instability of a two-dimensional linear autonomous system with Caputo
derivatives of different fractional orders have been reviewed and extended. As a
consequence, improved fractional-order independent sufficient conditions for the
stability and instability of such systems have been obtained. Several open problems
are identified below, which require further investigation, in accordance to the recent
trends in the field of interest of fractional-order differential equations:

e Are the fractional-order-independent sufficient conditions for stability and insta-
bility identified in this work, also necessary?

e Complete characterization of the fractional-order-independent stability set and
fractional-order-independent instability set, respectively.

e Extension of these results to the case of two-dimensional systems of fractional-
order difference equations [25, 26] and to higher dimensional systems.

As an application, the second part of the paper investigated the stability prop-
erties of a fractional-order FitzZHugh-Nagumo system. Moreover, numerical simula-
tions were provided, exemplifying the theoretical findings and revealing the possible
occurrence of Hopf bifurcations when critical values of the fractional orders are en-
countered.
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Fig. 1 Individual curves I'(c,q1,q2) (black) given by Lemma 3, for fixed values of c =5, g = 0.6,
for different values of g5 in the range 0.02 to 1. The shaded connected regions from the upper right
corner (red) and lower left corner (blue) represent the sets R;(c) and R, (c), respectively. The black
curves represent the boundary of the fractional-order-dependent stability region in each case.
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Fig. 2 Curves I'(c,q1,q2) given by Lemma 3, for fixed values of ¢ = 5, g; = 0.6, varying ¢ from
0.01 (red curve) to 1 (violet curve) with step size 0.01. The shaded connected regions from the
upper right corner (red) and lower left corner (blue) represent the sets R, (c) and Ry(c), respectively.
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Fig. 3 Membrane potential (v*) of the equilibrium states (v*,w*) of system (3) belonging to the
three branches (with parameter values: r = 0.08, ¢ = 0.7, d = 4.2) with respect to the external
excitation current / and their stability: red continuous and blue dotted parts represent asymptotic
stability and instability of the corresponding equilibrium states, regardless of the fractional orders
q1 and ¢.
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Fig. 4 Membrane potential (v*) of the equilibrium state (v*,w*) of system (3) (with parameter
values: r = 0.08, ¢ = 0.7, d = 1.2) with respect to the external excitation current / and their sta-
bility: the red continuous pieces represent parts of the first and third branches of equilibrium states
which are asymptotically stable, regardless of the fractional orders ¢; and ¢»; the blue dotted piece
represents the second branch of equilibrium states, which is fully unstable; the green dashed pieces
represent equilibrium states from the first and the third branches of equilibrium states whose sta-

bility depends on the fractional orders ¢; and ¢>.
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Fig. 5 Stability regions (shaded) in the (g;,g2)-plane for equilibrium states (v*,w*) of system
(3) (with parameter values: r = 0.08, ¢ = 0.7, d = 1.2), with different values of the membrane
potential v* between /1 — o ~ 0.41 and /T — ¢ ~ 0.95. In each case, the part of the blue curve
strictly above the first bisector represents the Hopf bifurcation curve in the (g1, )-plane.
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Fig. 6 Evolution of the state variables of system (3) (with parameter values: r = 0.08, ¢ = 0.7,
d = 1.2 and I = 1.25) for different values of the fractional orders. In the first five graphs, the value
for fractional order ¢, has been fixed 0.8 and the value of the fractional order g, has been increased.
Observe that for ¢g; = 0.6 we have asymptotic stability and for g; = 0.65 we have oscilations,
which means that between those values a Hopf bifucation occurs. Moreover, we observe that as q;
is increased, the frequency of the oscillations increases.
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