
Development of advanced control and optimization strategies for processes in the 

pharmaceutical industry integrating digital twin and machine learning concepts 

Pharmaceutical manufacturing plants are composed of complex processes and they have to 

operate close to operational constraints having very strict specifications for the quality of 

the product. Moreover they deal with highly integrated and complex processes, 

process/model uncertainty, production targets that are usually varying and have variability 

in the raw material [1-4]. Traditionally, pharmaceutical manufacturing processes operate 

in batch, meaning that the final drug product is achieved by running a pre-determined 

amount of raw material through different unit operations. Quality control is performed in 

a quality-by-testing approach (QbT) meaning that the attributes of the drug product quality 

are tested at the final processing step of each batch. 

Driven by the need for cost-effectiveness, improved sustainability, dependability, smart 

targeted solutions aiming at smaller patient population as well as due to modern 

manufacturing technology advancements, continuous manufacturing, a quicker, more 

effective process, has replaced batch pharmaceutical manufacturing in the pharmaceutical 

manufacturing industry [5-7]. This will also lead to a shift towards quality-by-control (QbC) 

which consists in designing and operating a robust system for manufacturing by using an 

active process control system based on the process design robustness, thus leading towards 

smart manufacturing [2]. 
This work lays the groundwork for cutting-edge Quality-by-Control (QbC) multi-
parametric model based predictive control (mp-MPC) strategies for a tablet manufacturing 
process. First, a model of the process is determined which is validated and calibrated using 
real data from a Pilot Plant. The model is further used to design advanced mp-MPCs that 
are robust, especially when dealing with uncertainty, against variable time delay, good 
disturbance rejection and they can incorporate constraints explicitly. Explicit/multi-
parametric model based predictive control (mp-MPC), uses multi- parametric programming 
to obtain offline the optimal solution of the problem. Therefore, the control inputs can be 
computed as a set of explicit linear functions based on the set-points, the states of the system, 
the disturbances, etc.[8, 9]. By using mp-MPC strategies, we can determine offline a map 
of all possible solutions helping us to determine the design space (DS) in closed-loop 
conditions [10]. Thus one of the important advantages that mp-MPC strategies are bringing 
to the pharmaceutical sector is that they are capable of offering a controllability map. As the 
full control law is available in a convenient map, the designers can easily identify 
uncontrollable operational regions and take action to remove the bottlenecks. This comes as 
a stark contrast to traditional MPC where there is no guarantee that the online controller will 
meet all the controllability objectives and/or satisfy all the operational constraints. This 
represents a great advantage for the pharmaceutical industries especially in dealing with the 
strict Food and Drug Administration (FDA) regulations. Another important advantage of 
using multi-parametric techniques (mp-MPC) is that through the use of offline optimization, 
the costly online computation of solving the optimisation problem at every sampling time 
is avoided, resulting in only the implementation of a straightforward lookup table and 
straightforward function evaluation. 

The limits and performances of the developed control strategies are tested on the original 
high fidelity model for different targets of operation, sensor measurement noise as well as 
process disturbances. The developed techniques present good performances meaning no 
significant overshoot or undershoot as well as a fast settling time. 



Process model 

The lubricant/glidant feeder and the rotating tablet press represent some of the most 
important unit operations in pharmaceutical manufacturing. The lubricant/glidant feeder is 
used for the reduction of loses due to friction and it facilitates the flow of the powder during 
die filling as well as the formation of solid tablets through mechanical compression. Hence, 
to monitor and control the tensile strength as well as the porosity of the tablets the models 
of the glidant effects in die filling as well as compression processes are used. These 
mechanistic models are capable of capturing the mixing conditions as well as the effects of 
the glidant concentration [11]. 

To determine the convex tablet weight, W, which is formed utilizing Natoli D-type 
tooling having shallow cup depth, the following equation will be used: 
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Where the variables ρb, Vfill , Hfill, nT, nF, and D represent the powder bulk density , the 
die cavity volume, the position of the dose, turret speed, the speed of the feed frame and the 
diameter of the die respectively. The model parameters ξ1 and ξ2 are estimated using data 
from experiments. The density of the bulk is dependent on the mixing conditions and the 
concentration of the glidant. The cavity volume for the Natoli D-type tooling is determined 
as follows: 
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where h represents the depth of the cup. The production rate of the tablet, 
tabletm  can be 

computed from: 

tablet T stationm Wn N   (3) 

where Nstation represents the number of available turret stations. The pre-compression 
force (PCF) can be calculated from : 
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Here, the a and b parameters (Kawakita constants [12]) are the maximum degree of 
compression respectively the reciprocal of the pressure that is applied in order to obtain this 
compression degree. ρpc is the relative density of the pre-compression and ρc represents the 
critical density. To compute the relative density of the pre-compression the following 
equations are used: 
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where Hpc represents the powder true density and ρt represents the thickness pre-
compression. Thus, Fpunch, the main compression force is given by: 
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The in-die relative density ρin-die is determined as follows: 
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Where the main compression thickness is given by Hin-die. The density of the tablet, ρtablet, 
is determined using the elastic recovery, ερ, of the tablet: 

 1tablet in die

             (10) 

The glidant mixing conditions doesn’t have much influence on the elastic recovery 
model, and it is given by: 
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where ρc,ε represent the relative density where tablets do not present elastic recovery and 
ε0  represents the in-die elastic recovery at full compaction [13].The tensile strength σt is 
dependent on glidant conditions and it is determined using the equation: 
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where σ0 represents the strength of the tensile when porosity is zero and σc, σt represents 
the relative critical density where tablets do not present any the tensile strength, meaning 
that it is the relative density needed for a tablet to start forming. 

The glidant concentration, cl depends on the bulk density and it can be included through: 
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Where ρb,0 defines the bulk density when the shear strain imparted is zero and ρb,∞ defines 
the bulk density when the shear strain imparted is infinite. Cp represents the conditions of 
the glidant and it is a lumped parameter that can be determined as follows: 
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where γ is the shear imparted to the powder while mixing and γ0 is the initial shear strain 
that is imparted before mixing. r1, r2, and r3 represent fitting parameters. 

In this work a Natoli NP-400 tablet press and SOTAX AT4 tablet tester is used to 

manufacture the tablets and collect data from experiments performed at steady-state 

conditions. The data from experiments is further used to obtain the values of the parameters 

of the real model used for parameter fitting and to calibrate the model used for simulation. 

 

Multi-parametric Model Predictive Control 

Fig 1 presents a schematic representation of the developed hierarchical control system 
layers. To determine the mp-MPC control laws the mp-QP optimization problem presented 
below is solved by using the POP toolbox [14] and the controller is determined: 
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where 𝑥  are given by the state estimator and they represent the estimated states, y 
represents the outputs, u represents the control action and Δu represents the changes in 
control actions, Δu(k) = u(k) – u(k-1). The output variables subsets that are being tracked 
have set points dependent on time yR. N represents the prediction horizon and Nu the control 
horizon. The sets of the state constraints and input constraints are given by X and U and they 
include the origin within the interior. The states objective coefficient is given by Q, the 
states terminal weight matrix is given by P and the matrix for the controller outputs is given 



by R. All of these matrixes are semi-positive definite (Q>0, P>0, R>0). Moreover, QR 
represents the quadratic matrix used for tracking the process outputs and R1 is the weight 
matrix for the changes of the controller outputs(Δu)  

A. Control Design 

For the design the controller, the tuning parameters that are determined for this work are: 

the states objective coefficients (x), Q=0, the matrix used for the tracked process outputs 

(y), QR is the unit matrix, the matrix used for controller outputs (u), R=0, R1 is a diagonal 

matrix having the diagonal values [0.001, 0.01, 0.1, 0.01]. For the control horizon we 

have Nu=1 and for the prediction horizon we have N=6. The control and prediction 

horizons are chosen taking into account the process characteristics and the desired closed-

loop performances. It is advised that N should be, at least 2n-1 but it shouldn’t be larger 

than the process rise-time. When determining the value of Nu, for processes that have no 

unstable underdamped or unstable poles, such as the process at hand, Nu=1 is usually 

satisfactory. The sample time is of Ts=1 [sec] since measured data is available from the 

plant every 1 second. The constraints on the manipulated input (dosing position, main 

compression thickness, pre-compression thickness and turret speed) will be imposed. One 

of the benefits of model predictive controllers is that they can incorporate constraints. 

The constraints on the manipulated inputs are: the dosing position between 6mm and 14 

mm, the pre-compression thickness between 0.5 mm and 14 mm, the main compression 

thickness between 0.5 mm and 6 mm and the turret speed between 0 rpm and 60 rpm. 

Results 

For this work, following the model of the process described in Section II.A, 4 inputs and 
4 outputs are used to determine the MIMO linear model through the System Identification 
toolbox in MATLAB. The linear model will be further used for the design of the controller. 
The four controlled variables for this process are: the tablet weight, the pre-compression 
force, the production rate, and the tensile strength. The four manipulated variables are: the 
dosing position, the pre-compression thickness, the main compression thickness and the 
turret speed. It is presumed that sensor measurements of the tablet tensile strength are 
available every second. The model parameters used in this paper represent experimental 
data and are: ξ1 = 0.036,  ξ2 = 0.03, ρb=0.365 [g/cm3], ρc=0.265, a = 0.8, 1/b= 10.26 [MPa], 
ρt = 1.53 [g/cm3], , ε0=0.08, ρc,ε, = 0.57, σ0 = 11.67 [MPa], ρ0=0.57, ρ∞=0.61, b1 = 0.31, b1 
= 0.38, b1 = 8.4, ρb,∞ = 0.45 [g/cm3], ρb,0 = 0.33 [g/cm3], r1 = 0.361, r2 = 1.394, r3 =23.326. 

To determine the control laws and determine the controller, the optimization problem 
(16) is solved using the POP toolbox [15]. 

Setpoint Changes 

To test how the designed control strategy performs, setpoint changes are given to the 
tablet weight from 225 mg to 255 mg at time t = 50 s, for the pre-compression force from 
0.37 kN to 0.67 kN at time t = 100 s, for the production rate from 7.4 kg/h to 8.4 kg/h at 
time t = 150 s, and for the tensile strength from 5.6 MPa to 6.4 MPa at time t = 200 s, 
respectively.  



 

Fig. 2. mp-MPC, setpoint tracking – output variables (Twei - tablet weight, Pcom - pre-compression force, 
Prod - production rate, and Tstr tensile strength) 

 

 

Fig. 3. mp-MPC, setpoint tracking - control action (Dose - dosing position, Ptck - pre-compression 
thickness, Mtck - main compression thickness and Tret - turret speed). 

Fig. 2 and Fig. 3 presents the closed loop system response using the mp-MPC for 
different setpoint changes for the case where we have no noise on the measured outputs. 
Fig. 2 shows the setpoint step responses of the controlled variables and it can be observed 



that the outputs are coupled meaning that a setpoint change on any of the outputs will affect 
the other ones. Fig. 3 presents the control action for the mp-MPC closed loop response. It 
can be observed that the setpoint change on the tablet weight (given at time t=50 seconds) 
has the strongest influence on all outputs. 

The mp-MPC controller has good performances such as: fast settling time, small 
overshoot and undershoot and no setpoint offset for the successive changes in all references. 
The mp-MPC is multivariable, meaning that each control action is responsible for all 4 
outputs. Thus, the control algorithm efficiently manages the input-output inter-influences, 
respectively minimizing the deviations of the other outputs from the reference values when 
the reference of one of the outputs changes. The evolution of the manipulated variables 
remains within the saturation limits. Moreover, every change of the manipulated variables 
shown in this work is realistic in nature and is feasible at normal operation of the tablet 
press. 

Noise and Disturbance Rejection 

To further evaluate the controller performances, sensor measurement noise is introduced. 
To simulate the noise the normally distributed error having zero mean and variance is added 
to the real sensor variability which is taken from the historical plant data. The closed loop 
response results for the controlled variables and the control actions are presented in Fig. 4 
and 5, respectively. It can be seen that the mpMPC controller has good performances when 
dealing with sensor measurement noise, all dynamic and stationary parameters of the 
response are maintained as in the case without noise. By an appropriate choice of the design 
parameters, it is possible to achieve an attenuation of the measurement noise oscillations 
and a compromise between the response time and the propagation of these oscillations in 
the control loop. It can be observed in the evolution of the 4 outputs that the response time 
of the 2nd output (Pcom) is longer than for the other outputs and thus the oscillations on the 
second manipulated input are more attenuated. If a damping of these oscillations for all 
manipulated variables is desired, one can act by reducing the aggressiveness of the 
controller on the respective loops by choosing the appropriate design parameters. 

Monitoring the powder bulk density is very important in the tablet press process, since it 
influences the tablet properties. Disturbances can occur throughout any of the upstream unit 
operations , e.g., during refill, within the feeder unit operations, when the feeder changes 
from gravimetric mode to volumetric mode, which will lead to either an increase in the bulk 
density because of compression or a decrease in bulk density given by aeration [16]. 

The disturbance on the bulk density is given by positive as well as negative changes in 
step on the silica concentration from the nominal value of 0.2% to 0.35% at time t=250 s 
and from 0.2% to 0.05% at time t=300 s, respectively. To determine how the direction of 
the disturbance impacts the performance of the controller, step changes are introduced in 
both directions. 



 

Fig. 4. mp-MPC, setpoint tracking – output variables with sensor measurement noise (Twei - tablet weight, 
Pcom - pre-compression force, Prod - production rate, and Tstr tensile strength ) 

 

Fig. 5. mp-MPC, setpoint tracking - control action with sensor measurement noise (Dose - dosing position, 
Ptck - pre-compression thickness, Mtck - main compression thickness and Tret - turret speed) 

Fig. 6 and Fig.7 presents the closed loop response of the outputs and the control action 
of the process under this disturbances. It can be observed that the controller presents good 
performances, it is capable of bringing the process back to the desired setpoint values even 
when dealing with process disturbances. 

In all the cases presented, to improve the control performances different tuning parameters 
of the predictive controllers can be given. To change how fast and how aggressive the 



controller responds, different prediction horizon can be given as well as different penalties 
on the different control actions. 

 

Fig. 6. mp-MPC, disturbance rejection - output variables with sensor measurement noise (Twei - tablet 
weight, Pcom - pre-compression force, Prod - production rate, and Tstr tensile strength ) 

 

Fig. 7. mp-MPC, disturbance rejection - control action with sensor measurement noise (Dose - dosing 

position, Ptck - pre-compression thickness, Mtck - main compression thickness and Tret - turret speed) 
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