

RAPORT DE ACTIVITATE

Acoperiri pe bază de hidroxiapatită substituită, cu proprietăți funcționale îmbunătățite pentru stimularea fixării la interfața os-implant

Etapa 1: sinteza și caracterizarea pulberilor de HAp biomimetică și HAp mono-substituită Director de proiect: Dr. Ing. Ionela Andreea NEACŞU
Membri echipei de cercetare: Dr. Ing. Alexandru Mihai GRUMEZESCU
Drd. Ing. Alexandra Cătălina BÎRCĂ
Drd. Ing. Cristina CHIRCOV
Drd. Ing. Alexandra Cristina BURDUȘEL

Problematica abordată

 Refacerea țesuturilor - o provocare
 dezvoltarea de metode

 Opțiuni de tratament actuale ≠ țesutul a suferit leziuni semnificative
 dezvoltarea de metode

 alternative de tratament pentru
 regenerarea țesuturilor

Ingineria tisulară

Regenerarea țesutului osos - utilizarea de autogrefe ≠ disponibilitate redusă și morbiditate

- \circ Biocompatibilitate \neq reacții inflamatorii, toxicitate, teratogenitate
- o Biodegradabilitate fagocitoză celulară, dizolvare, hidroliză enzimatică
- Osteoinducție și osteoconducție promovarea proliferării celulare și diferențierii în osteoblaste
- ο Porozitate, diametrul și structura porilor porozitate interconectată > 90%, Φ 200 400 μm
- o Performanțe mecanice bune rigiditate, duritate și rezistență

Hidroxiapatita substituită - proprietăți funcționale îmbunătățite

V. Uskoković, "Ion-doped hydroxyapatite: An impasse or the road to follow?," Ceram. Int., 46(8), 11443-11465, 2020

 Ce^{3+}

Îmbunătățește solubilitatea și biodegradabilitate a hidroxiapatitei

 Mg^{2+} Stimulează activitatea osteoclastelor de resorbție

Promovează diferențierea și proliferarea celulelor osteoblaste

Reduce răspunsul inflamator

Agent de contrast în imagistica medicală

Conferă activitate antimicrobiană și antioxidantă hidroxiapatitei

Rută neconvențională de sinteză

Rută convențională de sinteză

Fluxul operațional de obținere a biomaterialelor de tipul HAp, HApCe și HApMg

Caracterizarea morfologică și structurală a HAp

Figura 1. Difractograma de raze X și parametrii celulei elementare, dimensiunea medie de cristalit și cristalinitatea pulberilor de hidroxiapatită conform rafinării Rietveld pentru pulberile de hidroxiapatită sintetizată la parametri diferiți ai tratamentului hidrotermal asistat de microunde (* - HAp).

Caracterizarea morfologică și structurală a HAp

Caracterizarea morfologică și structurală a HApCe/HApMg

Proba		Parametrii celulei elementare						Dimensiunea	
		a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	medie de cristalit [nm]	Cristalinitate [%]
HAp_150		9,431	9,431	6,880	90	90	120	18,65	27,45
HAp_Mg_1%		9,446	9,446	6,878	90	90	120	12,81	25,50
HAp_Mg_3%		9,446	9,446	6,876	90	90	120	12,79	26,54
HAp_Mg_5%									
*	HAp 50,1%	9,450	9,450	6,878	90	90	120	12,23	30,99
•	Whitlockit 49,9%	10,419	10,419	37,292	90	90	120	49,54	

Figura 7. Difractograme de raze X și parametrii celulei elementare, dimensiunea medie de cristalit și cristalinitatea pulberilor de hidroxiapatită conform rafinării Rietveld pentru pulberile de hidroxiapatită substituită (* - HAp, • - Whitlockit).

Caracterizarea morfologică și structurală a HApCe/HApMg

Figura 8. Valorile diametrului hidrodinamic pentru hidroxiapatita tratată la 150 °C și substituită cu ioni de ceriu și magneziu la concentrații de 1, 3 și 5%. Figura 9. Valorile potențialului zeta pentru hidroxiapatita tratată la 150 °C și substituită cu ioni de ceriu și magneziu la concentrații de 1, 3 și 5%.

Caracterizarea morfologică și structurală a HApCe/HApMg

Figura 11. Spectrele FT-IR înregistrate pentru Hap_150, HAp_Mg_1%, HAp_Mg_3%, HAp_Mg_5%.

Caracterizarea morfologică și structurală a HApCe/HApMg

Figura 12. Micrografii SEM (a-c), distribuția dimensională după diametru (d) și după lungime (e) și cartografiere elementală înregistrate pentru HAp_Ce_5%.

Figura 13. Micrografii SEM (a-c), distribuția dimensională după diametru (d) și după lungime (e) și cartografiere elementală înregistrate pentru HAp_Mg_5%.

Diseminarea rezultatelor s-a realizat prin participarea cu 2 lucrări la conferința internațională "Applications of Chemistry in Nanosciences and Biomaterials Engineering" NanoBioMat 2022 – Summer Edition, 22-24 Iunie 2022:

- Cerium-substituted Hydroxyapatite for Bone Regeneration. Alexandra-Cristina Burdusel, Ecaterina Andronescu, Alexandru-Mihai Grumezescu, Anton Ficai, Alina Maria Holban
- Current Trends in the Synthesis of Natural Hydroxyapatite-Based Materials for Tissue Engineering. Diana-Elena Radulescu, Ecaterina Andronescu, Alexandru-Mihai Grumezescu, Ionela Andreea Neacsu, Otilia Ruxandra Vasile

Vă mulțumesc pentru atenție!