
Context-Aware Security Framework for Android
Contantin-Alexandru Tudorică

Automatic Control and Computers Faculty
University Politehnica of Bucharest
constantin.tudorica1305@cti.pub.ro

Laura Gheorghe
Research and Development Department

Academy of Romanian Scientists
Bucharest, Romania

laura.gheorghe@cs.pub.ro

Abstract—The popularity of mobile devices has increased and
therefore they have become major targets for attacks, especially
the ones that involve stealing private information. On Android,
security policies are approved at install time and can’t be changed
afterwards. This behavior gives the decision power to the devel-
oper, although the user should be in charge of what is happening
on their device. Users mostly find a need to change permissions
depending on their context (location, network, time of day,
etc.). This paper proposes a method of implementing Context-
Awareness security policies on Android through an extensible
Context-Awareness Security Framework that works with policy
files and third party providers of contextual information.

Index Terms—Android, Context-Aware, security, framework,
permissions

I. INTRODUCTION

Due to the increasingly evolving role that mobile devices
have in our lives, they now store sensitive and private infor-
mation that needs to be protected from malevolent actors that
use malicious applications in order to leak private information.

Android Permissions are grouped into Android permission
groups. Whenever an application is installed you are granting
the application access to a group of permissions. Subsequent
updates of that application will not trigger an approve prompt
if the new permissions are part of preapproved groups. This
allows a certain degree of privilege escalation. Also some APIs
are pretty coarse, like the one that allows Internet access. You
can’t specify which domains or IP addresses the application
is allowed to connect to.

There is a need for a finer grained control over Android
permissions. Previous work, by M. Conti et al. [1], proved that
a context aware security policy mapped on Android’s existing
permission system can be made. Rather than creating a generic
way of defining contexts, they focused more on implement-
ing flexible policies for permissions access control and only
treated a single type of IPC (Interprocess communication) that
can take place between two Android applications and did not
look at securing the Android System Libraries.

Another approach was done by Arena et al. [2], where
they provided a different experience by requesting the user’s
confirmation when a certain permission was used for the first
time, mimicking the way permissions are granted on iOS.

This paper aims to provide a method for integrating context-
aware security policies into the Android Framework, thus
creating a security framework for Android. The reason for
choosing context-aware security is that it greatly improves
information security without having to involve the user and
has the ability to create dynamic security policies.

The solution proposed in this work tries to take into consid-
eration the vast ecosystem and uses frameworks and methods
that are minimally invasive and have been proven to work on
a large number of devices and Android versions.

There are a couple of problems with the existing solutions
outlined above. The first problem is that they don’t have
an encompassing protection for all the existing Android API
(Application Programming Interface) calls and can’t allow fine
grained access to certain permissions. The second problem is
that they each define a restrained set of contextual information
that their system supports and do not look at ways of allowing
the contextual information to be extended.

Our solution takes another approach by constructing a
framework that allows for the easy integration of third party
applications that provide context information and designs a
policy specification which delivers great flexibility by com-
bining all the contextual information into permissions across
the Android OS.

Specifying rules for context-aware security on Android de-
vices is similar to specifying a set of Access Control Lists. One
of the standards that are used to define ACLs in the industry is
the Extensible Access Control Markup Language (XACML)
standard [3]. SecuDroid[2] presents a way of extending the
language in order to define context rules in it. The markup
extension used by our solution, is based upon their work and
extends it in order to be able to define specific contexts based
upon our extensible context architecture.

The rest of the paper is structured as follows. Section II
presents the existing work related to the design of context-
aware solutions and Android security frameworks. Section
III describes the architecture of a context-aware security
framework and the policy definition mechanism. Section IV
presents the implementation decisions and the frameworks that
were used. Section V shows the test scenarios and results.
Section VI presents the conclusions and possible ways of
further extending our framework.

II. BACKGROUND

A. Android Permission System

Android represents a privilege-separated operating system,
therefore each application functions with a different system
identity (Linux user ID and group ID)and also elements of
the system are divided into distinct identities. In this manner,
Linux separates the applications from each other and from the
system.

Security features that are more refined are provided using
a ”permission” mechanism that implements restrictions on the
particular tasks that a specific process can perform, and per-
URI permissions for offering ad hoc access to specific pieces
of data.

1) Security Architecture: One important design feature
belonging to the Android architecture is the fact that no
application has the authorization to run any operation that
could affect any other one, including reading or writing the
personal data of the user or another’s application’s files.

Every Android application functions in a process sandbox
and must share resources and data by declaring the authoriza-
tion they require for further abilities that are not offered by
the basic sandbox. When statically declaring the permission
they need, the Android system asks for the user’s consent.

The application sandbox is independent from the technology
that was used in order to build the application. For example,
the Dalvik VM is not a security edge, any application having
the possibility to run native code (see the Android NDK).
Java, native, and hybrid applications are sandboxed in a similar
manner and have the same degree of security from each other.

2) Application signing: All .apk files must be signed
using a developer’s certificate. This way, the author of the
application is identified and it is possible for the system to
approve or deny the request of an application to receive the
same Linux identity as another one. It isn’t necessary for
the certificate to be signed by a certificate authority, being
allowed for Android applications to use self-signed certificates.
This type of permissions are named signature-level
permissions.

3) Permission definition: Application permissions
are defined in the application’s manifest file named
AndroidManifest.xml. Android permissions can be re-
quested and also specified in the AndroidManifest.xml
file. The operating system maintains a cache of these policies
in the /data/system/packages.xml file which is used
by the Package Manager Android system service.

Android permissions are of four types: normal, dangerous,
signature and signatureOrSystem. The normal permissions are
permissions that any application can request and are granted
by default. Some of these permissions are INTERNET and
VIBRATE, which control access to the Internet and respec-
tively, access to the vibration function of a device. Dangereous
permissions on the other hand, are the ones that could permit
an application access to private information, or that could have
an impact on the data stored on the device.

Dangerous permissions are grouped into permission groups.
When the user approves a permission it actually sees the
permission group name and icon. If in an update an application
requires another permission from the same group, this per-
mission is automatically granted. For example an application
can request the RECEIVE_SMS permission that is the SMS
category. The application can then be updated to also require
the SEND_SMS permission since they are in the same SMS
permission group the package installer will not request the
approval of the new permission.

Applications can also define their own permissions. In order
to do so an application must define a permission-tree
which is a reverse domain path letting the OS know that all
the permissions under that path are managed by the appli-
cation. The application can also define permissions dynami-
cally by calling PackageManager.addPermission().
After this, it must define a permission-group. The
permission-group is similar to the dangerous permis-
sions groups that are defined in Android. This is what the
user will see in the installer application, this means that it
is recommended to have an icon and label specified, be-
sides the name. Finally a permission is defined using the
permission tag. The permission’s protection level can have
one of the four values normal, dangerous, signature
and signatureOrSystem. The signature protection
level specifies that the permission is automatically granted
to an application signed with the same developer certificate,
while the signatureOrSystem also grants the permission
to a system application.

B. XPosed Framework

For security reasons Android System Services are installed
on a read-only partition that can be only updated through a
Android system update.

The normal way of modifying Android Services is that of
getting the open-source code and recompiling an new custom
Android version. Another less invasive way of doing this is
through the XPosed framework. The XPosed framework once
installed allows a developer to write hooks into any Android
Java application. The XPosed framework works by modifying
the /system/bin/app_process and injecting itself into
the Zygote process. From there, due to the nature of the Zygote
and the way Android applications are created, inject hooks
into any application that is started, including Android System
Services. This is done by changing the hooked methods type
to native and linking the method to a special native method
that is part of XposedBridge, named hookMethodNative.
This method passes the parameters it was called with, to the
XposedBridge which then invokes our code.

III. RELATED WORK

The development of context-aware services has accelerated
academic interest toward context-aware policies, especially the
ones focused on mobile devices.

A. Security Policies

In order for access control systems to integrate context
data into their policies they need a way to support it in their
specification. The current language used for access control sys-
tems is named eXtensible Access Control Markup Language
(XACML)[3]. Cheaito et al. [4] presented a specification that
is based upon XACML and that extends it in order to add
support for contextual information.

Another work treating access control policies was proposed
by Li et al.[5]. It deals with integrating context and role into
the access control of web services. Their model focuses on the

context in which the device is used in order to define access
control policies. The context is defined as the environment
and resources of the user and can be used to disable specific
rights. For example, if the user logs in from a public WiFi he
can view documents, but not modify them. Systems like this
add an extra security layer on top of the already implemented
security measures.

B. Context

Although Context-Aware Computing is a term used in
the academic world, there is not one agreed upon defini-
tion of what the word context means. The Merriam-Webster
dictionary defines it as ”the interrelated condition in which
something exists or occurs”. There are multiple definitions of
context depending on the domain it is used. Dey [6] defines
context as ”any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves”.
This is a proper definition that relates better to the mobile
context that can be extracted from an Android device.

The factors that can make up a context are classified by
Chen et al.[7] into four categories:

1) Computing context: network connectivity, communica-
tion cost and bandwidth, nearby resources

2) User context: user profile, user role, location, social
situation

3) Physical context: lighting, noise, traffic condition, tem-
perature

4) Time context: time of day, day of the week, timezone,
season of the year

Location can be determined in multiple ways. Global Position-
ing System (GPS) can only be used for outdoor locations. For
indoor locations there are multiple ways of identifying user
location, either through Ultrasonic and radio signals, RADAR
or WiFi signals and Bluetooth signals. Since there is no way
to track the user both indoors and outdoors using the same
method, multiple methods must be used in parallel which can
lead to conflicts.

C. Android Security

The need for a secure mobile device has forced companies
to create alliances and projects that aim to produce secure mo-
bile devices. Some examples of these projects are OpenMoko
[8] and OMTP [9]. A lot of the academic effort went into
securing mobile phones by creating certification mechanisms
for applications and implementing a permission system at the
runtime level, for example Java MIDP 2.0 security model
restricts application permissions.

Even though the above solutions solve the problem of
filtering applications at install time, they don’t implement any
additional security enforcement at runtime.

CRePE [1] introduces a system that works by using the
Android permissions and enforces context aware policies.
It bases its context on different scenarios (e.g. the connec-
tion of a mobile phone to a workplace WiFi connection,

a mobile device present in a certain geographical position
using GPS), each one representing a context. Their solution
modifies the ActivityManagerService and intercepts
only startActivity Intents, which they consider as be-
ing the most used Intents for communicating between two
applications. While this might be true, their solution does not
enforce context-aware policies in the communication between
an application and the Android System. They do consider
the implications of securing system services by using their
ActionPerformer service which, if the policy specifies,
can shut down system services on the user’s device.

SecureDroid [2] is another work that treats the problem of
changing permissions after the application is installed. They
present a system that asks the user for a confirmation the
first time a permission is used, giving him the option to
accept or deny the permission. The answer is remembered
for the lifetime of the application. The user experience is
similar to that of the iOS operating system and Android
6 when running applications developed for this version of
Android specifically. Context information is not used in order
to change the policies. They define their policies by extending
XACML in a specific manner similar to our system. They
also thought about implementing a priority between multiple
actors that are interested in enforcing security policies on
the device, thus they can have multiple policies which are
evaluated in this order: the device manufacturer’s policy, the
network carrier’s policy, third party policies like the ones a
workplace might enforce on the device and then the user’s
policy. When it comes to enforcement SecureDroid injects
itself in the PackageManager’s checkPermission method
in order to verify every call that is made to this endpoint. This
looks like a good approach, just that it is still implemented on
top of Android permissions, thus it lacks the granularity of
control.

Apex [10] is a system that extends the Android permissions
with conditional checks. Apex doesn’t detect a user’s context
but allows limitations for a permission depending on the
number of uses or time of day. For example, a limit can be
imposed on the number of SMS messages that the application
can send or limit an application’s access to GPS information
for just a specific period of the day. The only time these
restrictions can be created is at install time, therefore not
allowing the user to modify these permissions afterwards.
They also created a domain specific policy language in order
to implement more complex security policies.

All the previously mentioned solutions don’t take into
consideration that the majority of applications will crash if
a permission is revoked after install. Even in Android 6 they
request the permissions dynamically just for applications that
are made specifically for that version of Android.

Our solution handles these cases by responding with fake
data instead of denying the API call.

IV. ARCHITECTURE

Our solution involves implementing an engine that dy-
namically modifies the permission database according to a

Application

Permission
Checker

Android Permission
Checking

Policy Manager

Policy Database

Android Middleware

Linux Kernel

XPrivacy Context
Information

Context Awareness
Service

Security
Policy

Policy Update
Service

Context Provider

Figure 1: Architecture for a Context Aware Security Frame-
work

security policy described in XACML. This engine uses context
providing applications which are installed on the device and
are used to determine the context of the device.

The architecture is comprised of the following components
(as it can bee seen in Figure 1):

• Policy Update Service - a service that maintains up
to date the Security Policy and the Context Providers
specified in the policy

• Security Policy - a security policy written in XACML
• Context Provider - an application that provides contex-

tual information to the Context Awareness Service
• Context Awareness Service - the service that modifies

the Policy Database whenever it is necessary
• Policy Database - the database with security policies
• Policy Manager - the service that answers queries com-

ing from the Permission Checker
• Permission Checker - the part of the system that checks

a permission each time an API is called
In order to intercept all the calls made to the Android APIs

we needed to modify all the API endpoints in the Android
Middleware. Instead of modifying the Android code we choose
to inject our code into the Android API processes with the help
of the XPosed module, which allows dynamic code injection
in process at start time. The XPrivacy framework already does
this for all the hundreds of Android API endpoints including
the ones that are protected under the same Android permission.
It is compatible with Android API versions 15 to 19 which
translates to Android 4.0.3 to 4.4.4. According to Google’s
own dashboard [11] this makes up to 60% of the Android

devices at this time.
The contextual information supplied by a Context Provider

is made out of facts. Each fact can be true or false. Each fact’s
name is prefixed with the component name of it’s Context
Provider, hence avoiding namespace collisions.

XACML is successfully used on RFID physical security
locks[12]. In that case, the locks which represent the Policy
Enforcement Point (PEP), can’t query a Policy Decision Point
(PDP) because they need to be able to operate in a distributed
manner which means that each lock gets a set of cards that are
allowed to access the door. The PDP system needs to compute
this for every lock and then program the information into them.
This system is similar to our case in Android, where XPrivacy
maintains a cache of the current policy in each Android API
endpoint which is refreshed every 15 seconds. The elimination
of the cache is impractical because of performance reasons,
otherwise each Intent would trigger another Intent to the
XPrivacy service. Hence, we can assume that each endpoint of
a system service has a list of applications which are allowed
to talk to that endpoint. In order to achieve this we must
pre-compute all the possible combinations of API categories
and applications for the current context and update XPrivacy’s
database.

The architecture of the solution (presented in Figure 1) is
centered around a Context Awareness Service that evaluates a
policy based on contextual information, named facts, which is
updated by Context Providers. The Security Policy is updated
using the Policy Update Service. The Policy Update service is
also responsible for keeping the Context Providers up-to-date
considering the definitions they have in the security policy.
The security policy is an XML file based on an extended
XACML[3] specification.

V. IMPLEMENTATION

A. XPrivacy

Denying access by enforcing the policies at the Android
Permission level will break a lot of applications. Work done
by Marcel Bokhorst in XPrivacy [13] showed us that in order
to enforce the policies and deliver a good user experience these
applications need to receive data, just not real data.

For example, if you don’t want to give access to the contacts
to an application, you can’t block the response, since this will
make the application unresponsive or crash it. XPrivacy solves
this problem by returning an empty list of contacts or a list of
predefined fake contacts.

The way we can communicate with XPrivacy is by
modifying the permission database, that it keeps in the
/data/system folder. In order to access the database, our
Context Manager must have elevated privileges.

XPrivacy’s databases structure represented in Figure 2
is simple enough to be modified using basic informa-
tion about the applications, like what User ID (UID)
the Android Operating System assigns to each applica-
tion at install time, which is obtained from the XML file
/data/system/packages.xml.

The Context Awareness Service is responsible for updating
XPrivacy’s database. Because of the location of the database,
the process needs to have the SUPERUSER privilege in order
to access it. This is the only process of the system that requires
elevated privileges.

B. System applications

There are two types of system applications in Android:
applications that are installed on the system partition, these
have access to privileged APIs in the Android, and applications
that are run under the system user, which have higher
privileges at the operating system level. Just a couple of
system applications run under that user. Functioning under the
system user requires the application to be signed with the
same key as the Android image. This would hinder distribution
of the application by requiring each user to install a custom
version of Android in order to use the system.

In order to circumvent the requirement, all the modifications
done to the XPrivacy database require a root user shell. The
database is modified using the sqlite3 helper from the
command line.

C. Context Providers

Context Providers are normal or system applications that
register facts and update their facts status to the Context
Awareness Service.

Context Providers must have a BroadcastReceiver that an-
swers to the UPDATE_FACTS Intent that is broadcasted by
the Context Awareness Service in order to discover what facts
are still available and which are not.

Context Providers must request the
com.tudalex.fingerprint.permission.CONTEXT_-
PROVIDER permission in order to be able to communicate
with the Context Awareness Service.

This allows for modularity and extensibility of the archi-
tecture, enabling the Context Providers to be normal Android
applications.

All the facts are identified by the name and the package
name of the application that provides the facts so that there
can’t be a collision made in the fact namespace.

In the policy oriented approach Context Providers are
registered in the policy file and the facts that are exported
specified in that file. This approach means that they don’t
have to implement a broadcast receiver in order to handle the
com.tudalex.fingerprint.UPDATE_FACTS Intent.

In our implementation we created a couple of Context
Providers. The demo context provider has a set of checkboxes
each representing a fact that it exports. This Context Provider
was used to simplify development and testing of the frame-
work.

The other Context Provider has a list of trusted Wi-Fi SSIDs
and monitors any change to the network status in order to
update it’s fact. This is done by listening, using a Broadcas-
tReciever, for the android.net.wifi.STATE_CHANGE
Intent. The Intent it receives carries with it the current network
information, from which you can extract the status of the

network which can be connected, connecting, disconnecting
and disconnected. It checks that the state is connected and
then compares the SSID to the ones it has stored. For storing
trusted SSIDs the Context Provider uses the SharedPreferences
Android API. This API allows for simple key-value storage.
Because accessing these preferences takes a long time since
they are stored on disk, a cache was created around the
SharedPreferences API. We are aware that a WiFi can’t be
trusted just by it’s SSID, but we consider this provider as
being a practical example of the extent in which the system
can be used.

D. XACML policy

In order to include contextual information in the XACML
policy, it needs to be extended with tags that contain this
information. Based upon the work on SecuDroid we apply
several modifications to a XACML policy. An example of an
extended XACML policy can bee seen in Listing 1.

<p o l i c y−s e t>
<p o l i c y combine=” deny−o v e r r i d e s ”>

< t a r g e t>
<s u b j e c t a t t r =” i d ” match=”com . company .

exampleApp ”>< / s u b j e c t>
< / t a r g e t>
<r u l e e f f e c t =” deny ”>

<c o n d i t i o n>
<r e s o u r c e−match a t t r =” ap i−c a t e g o r y ” match=”

i n t e r n e t ” />
<c o n t e x t−match a t t r =” i d ” match=”com .

c o n t e x t P r o v i d e r . Wif i ” />
< / c o n d i t i o n>

< / r u l e>
<r u l e e f f e c t =” p e r m i t ”>< / r u l e>

< / p o l i c y>
<c o n t e x t−s e t>
. . .
< / c o n t e x t−s e t>

< / p o l i c y−s e t>

Listing 1: Sample policy markup

The policy set has one policy tag which uses the
deny-overrides algorithm to combine the rules, this
algorithm signifies that if a rule with deny can be applied
then that one takes precedence over any permit rule that is also
valid. It also contains a target specified by an application ID,
which must match com.company.exampleApp. The first
rule has a set of conditions which are evaluated using a logical
AND operator between them. The first condition matches all
APIs in the Internet category, while the second rule matches
the context com.contextProvider.Wifi. So that if the
application com.company.exampleApp tries to access the
Internet while being connected to Wifi, it will be blocked. The
second rule specifies that in other cases the application should
have access to the Internet APIs.

<c o n t e x t−s e t>
<c o n t e x t name=”com . company . T e s t i n g E n v i r o m e n t ”>
<r u l e a t t r = ”com . company . Wif i . R e s t r i c t e d W i f i ” match

=” t r u e ” />
<r u l e a t t r = ”com . company . E x p l o i t . CVE−2015−6638”

match=” f a l s e ” />
< / c o n t e x t>

<c o n t e x t−p r o v i d e r package−name=”com . company . Wif i ”
s i g n a t u r e =” ab823f . . . ” sou rce−u r l =” h t t p s : / / ”>

< / c o n t e x t−s e t>

Listing 2: Sample context markup

In Listing 2, there is the description of a context-set
which specifies the contexts defined in a policy-set. Each
context is made out of multiple rules which are evaluated with
a logical AND between them. Each rule matches a specific fact
that is provided by a Context Provider and a specific value
that each one has to have (true or false). Each fact is named
by appending it to the Context Provider’s application ID. A
Context-Provider specifies a Context Provider, with its
application ID, its signature and the URL where the Update
Service can fetch the latest version of the Context Provider in
case it is not installed or the signatures don’t match.

Our extensible way of accepting contexts in which no veri-
fication is carried on the Context Providers leaves the system
exploitable, because another application can be installed which
has the same package name, since there is nothing in Android
to enforce and validate, just certain developers. In order to
check if a Context Provider is trusted, each Context Provider
must be validated by suppling a package signature. If the
package signature does not match the provider, it is treated
as if it was not installed.

E. Context Awareness Service

The Context Awareness Service manages the Context
Providers. The fact handling was taken out of it so that it
doesn’t require to be a system application. Also this allows
for an extensible architecture in which any application can
provide facts to be included in context definitions.

The Context Awareness Service is responsible of also pro-
cessing the policy. It uses a simple boolean algebra to parse
rules and does not handle conflicts. Taking into consideration
the amount of processing necessary to handle conflicts in poli-
cies and due to the model of XPrivacy’s database (presented
in Figure 2) and architecture, we can’t have an online PDP
engine, therefore the Context Awareness Service must evaluate
all the rules in the XPrivacy database against the policy for
each change in the contextual information it has.

If the Context Provider is not installed on the device, the
policy must specify a URL from which the Context Provider
can be obtained.

If a Context Provider can’t be obtained and it is not
installed, then the policy can’t be processed. We can’t make
any safe assumptions regarding the context, because policies
can depend on the presence or absence of a context. Therefore,
the old policy remains in place.

The reason why the policy is not stored in memory is
because there is no reliable way of doing it in Android and also
because of a design decision that was done in the beginning,
of having the Context Awareness Service be an IntentService.
This means that each time the service is called, a process
is spawned and after it finishes processing the Intent it gets
destroyed. This is the recommended way[14] of implementing

a service which responds to Intents in Android and also helps
the framework consume less memory since it doesn’t have a
running service in the background all the time. If we were
to implement the Context Awareness Service as a normal
Android service there are no guarantees that Android will keep
the service running if it needs more memory.

Because of the extension of the language and the fact that
Android runs on an older version of Java, other implementa-
tions of an XACML PDP[15] are not easy to modify for our
use case, so we wrote an evaluating engine ourselves.

The evaluation engine makes a few assumptions:

• A rule contains at least one rule-match element or no
elements.

• A rule-match element can only match the
api-category attribute, on one of the supported API
categories.

• Policies do not conflict.

These assumptions are made such that the engine doesn’t
have to deal with corner cases such as a policy that doesn’t
specify any API to restrict. Hence, also speeding up the
execution by not having the evaluation engine verify if each
API category is in fact a valid XPrivacy API category.

After parsing the policy the first thing the engine does,
is that it triggers and waits for all the Context Providers to
be available. A Context Provider is an Android application
that implements a specific API which provides the Context
Awareness Service with its context information.

In order to bypass the normal installation screen that an
Android device has, the applications are installed using adb
from a root shell (e.g. adb install -r app.apk).

The engine then goes over all the possible combinations of
application and category ID’s and evaluates if access to that
category of endpoints is permitted or not. This information
is written to the XPrivacy database, thus enforcing the new
security constraints.

Making sure that an attacker can not cause a Denial of
Service attack by blocking the possibility of obtaining a
Context Provider does not make the scope of this paper.

F. Known limitations

One of the limitations of XPrivacy is that in order to prevent
excessive use of its database, it has two layers of cache: a layer
in the XPrivacy Service and another one in the code that is
injected in each application.

The XPrivacy Service acts as a proxy for the database and
it is called by all the injected code. This cache can be flushed
by sending an Intent with the action
biz.bokhorst.xprivacy.action.FLUSH.

The second cache present in the injected code can’t be
flushed and it has a cache time hard coded to 15 seconds.

This means that it might take up to 15 seconds for the
modifications to be seen. This applies only to applications that
are already running.

Figure 2: XPrivacy databases

G. Secure Intents

The problem of communicating using Intents in Android
is that they can’t be verified. Intents, in the form that they
arrive in Java do not contain information pertaining to who
sent them that can be verified and not spoofed. Even declaring
an intent-filter attribute will not make Android filter
explicit intents, just the implicit ones. Since the permissions
can be easily approved by the user, we don’t consider this
a safe approach to securing the communication between a
trusted Context Provider and the Context Awareness Service,
hence we investigate other ways of verifying the sender. Some
of the possible Intents also lack reliable authentication that
can’t be spoofed.

1) startActivityForResult: The most simple way to verify
if an Intent comes from the corresponding application is to
only accept Intents that require a result. These Intents have a
method getComponentName, that returns the name of the
Android component that sent the Intent. A simple check can
validate an Intent against a known list of components that are
allowed to access this BroadcastReceiver.

This can be easily implemented starting from the policy,
since the policy needs to explicitly define each Context
Provider as it can be seen in Listing 2.

Considering the way that our Context Awareness Service is
created as an IntentService this method does not work for us,
and we don’t want to make a startActivityForResult
call that will launch a new Android Activity on the screen.

2) TrustedIntents: TrustedIntents [16] is a library
created by the Guardian Project that aims at fixing
exactly our problem. TrustedIntents builds upon the
startActivityForResult solution and adds an
extra verification, by comparing the calling application’s
signature to a list of pinned signatures.

Though useful in some use cases, TrustedIntents is not
useful for our approach since we don’t want to use the
startActivityForResult call for communicating with
the Context Awareness Service which is implemented as an
IntentService, not as an Activity.

3) Signing Intent data using HMAC: A simple solution
of verifying an Intent is to sign it. By applying a HMAC
(keyed-Hash Message Authentication Code) to the name of
the Context Provider concatenated with name of the fact and
its value, we can create a signature of the Intent, which can
be easily verified at the other end. This does not require the
use of startActivityForResult, thus leaving us free to
implement the Context Awareness Service as an Intent Service
[14], which is only present in memory when it has Intents
he needs to respond to. In order to implement this, another
attribute must be added to the XACML specification: a key
for each Context Provider. An example specification can be
seen in Listing 2.

The only way an Intent can be compromised is if a malicious
application has the ability to intercept the security policy and
extract the secret keys for each application.

This can be improved by using Public-Private Cryptography
and delivering only the public key in the security policy. This
allows for data to be signed using the Context Provider’s
private key and verified by the receiver using the public key
that is listed in the security policy.

But even this way of signing Intents does not prevent Intent
sniffing. The only way to truly prevent it is for the Context
Provider to have the public key of the Context Awareness
Service and initiate a Diffie-Hellman Key Exchange in order
to agree on an encryption key that will be used to encrypt
Intent data.

<c o n t e x t−s e t>
. . .
<c o n t e x t−p r o v i d e r package−name=”com . company . Wif i ”

s i g n a t u r e =” ab823f . . . ” sou rce−u r l =” h t t p s : / / ”
s e c r e t k e y =”A8F6D . . . ” >

< / c o n t e x t−s e t>

Listing 3: Sample context-provider markup that uses a
signature attribute

H. Rule evaluation

The rules are evaluated using a backtracking approach,
looking into all the possible conditions. More complex rule
evaluation can be done with a constraint solver, like Z3.
Running Z3 on Android proved to be a challenge due to
differences in the Java Native API which is different in
Android compared to pure Java.

VI. RESULTS

A. Setup

The development has been done on a Nexus 7 device
running Android 4.4.2. This represents the latest Android
version supporting the XPosed framework. In order to install
the XPosed framework, the Android device must have the
Android.SUPERUSER permission. The XPosed framework
requires it so that it can inject the modules in the Android
Zygote.

In order to automate tests on the Android device, the
monkeyrunner framework was used. The monkeyrunner
framework simplifies interaction with the device.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100

Se
co

nd
s

fo
r 1

0,
00

0
ca

lls

Run number (sorted by run time)

Without XPrivacy
With XPrivacy

Figure 3: Intent benchmark

B. Scenarios

Using the monkeyrunner framework, we have created
a real life testing scenario of normal usage of a device that
consisted of opening the GMail application, clicking on the
first email, then opening the Chrome browser and navigating
to www.facebook.com. The main problem was that the
framework did not have any possibility of waiting for an action
to happen. The only metric we could obtain is whether the final
image after passing through each of the steps was the desired
one or not. Given the dynamic nature of an Android device
this benchmark was pretty flaky, for example notifications
being received would make the image to be different from the
reference. We decided to not purse this method any further.

Since the framework does not have a direct impact on
compute performance, a good benchmark would be to evaluate
added power consumption over a period of time of normal
use. In this case, the monkeyrunner can come in handy. We
created a scenario of looping through four applications: GMail,
Chrome, Facebook and 3DMark, changing the application
every minute while keeping the screen awake and starting with
a full powered battery. Due to the high variation in results, we
did not include the results of this benchmark in the paper.

The most important aspect of any security framework is
the impact it has on the system. In order to measure the
impact our framework has on the system, a simple scenario is
constructed in which an application requests access to network
settings. Because accessing the network settings takes less than
a millisecond, hence being hard to measure, this approach
evaluates how long it takes to request them 10.000 times.

C. Results

As it can be seen in Figure 3, the XPrivacy framework
increases the time it takes by a factor of 3.6. This is much
more than it was expected and might be a significant problem
that needs to be overcome in order for this approach to be
viable.

Figure 4: Popular benchmarks, average over 10 runs

Since the previous benchmark only measures the time it
takes to do an Intent to a system service, it shows a skewed
view of how well an Android application run, because this
penalty is only applied to calls made to system services
which should not be as many as in our benchmark in a real
application. The sole purpose of the benchmark is to show
the overhead involved in communicating with system services
when using our solution.

There was no change in policies so there was no overhead
of updating the XPrivacy database while the benchmark was
running.

During benchmarking, every 15 seconds our benchmark
would have a spike in execution speed. This spike is due to
the way XPrivacy caches information. XPrivacy injects into
the Zygote process, therefore it then can inject custom code
for each Android system service. Each injected code maintains
its policies in a 15 second cache in order to prevent it from
querying a SQLite database for each Intent. This has the
effect that any policy change will take up to 15 seconds to
be implemented on the device.

Another approach of testing our solution was through the
use of popular benchmark software already available for the
Android platform. Each benchmark was run 10 times with our
system and 10 times without, an average of their scores was
calculated. Because the benchmarks represent their results in
their own defined metric, we took the results without XPosed
as a baseline for each benchmark and only calculated the
difference as a percentage to the baseline.

In Figure 4, we can see that the 3Dmark benchmark is less
than 2% slower when using XPosed and XPrivacy and AnTuTu
benchmark is only 4% slower. These tests were obtained as the
average scores over 10 consecutive runs of the benchmarks.
An interesting fact is that AnTuTu benchmark obtained the
same scores after each run, denoting the fact that it probably
already does multiple runs internally before coming up with
the score. The outlier is GeekBench which is around 10%
slower.

The 3DMark benchmark used is called Ice Storm. IT uses
OpenGL ES2.0. It includes two Graphics tests to measure GPU

performance and a Physics test to stress test CPU performance.
The Geekbench version we used only tests single core per-

formance of the device. Further testing is necessary to figure
out if the results are reproducible on other more powerful
hardware or what does the Geekbench benchmark specifically
do in order to be affected by XPosed and XPrivacy.

AnTuTu benchmark similar to the 3DMark benchmark tests
both the GPU and CPU performance of the device.

VII. CONCLUSION AND FURTHER WORK

In this paper we have proposed a solution for imple-
menting a context-aware security framework in Android. The
framework’s engine can implement a XACML policy into
rules for the XPrivacy framework. The XACML policy has
been extended to contain constraints related to contextual
information. We also investigated a user oriented approach in
which the user has to manage the security policy.

This approach minimizes the changes that need to be done to
the operating system and has an extensible design by offering
a way to define a context aware policy. Such a provider can be
used by third party applications that are authorized to configure
contexts and policies.

As more and more companies adopt a Bring your own
device (BYOD) policy there will come a need for centralized
control of application privileges and ways to enforce them on
the managed devices. As it could be seen in the results section
the performance of the system is quite good, which allows for
this approach to be used also on low end devices.

The system could be further pursued to be integrated
directly in Android version 6 and newer where we would not
be forced to use XPrivacy and should have little impact on the
system.

ACKNOWLEDGMENT

The work has been funded by the program Partnerships in
priority areas – PN II carried out by MEN-UEFISCDI, project
No. 47/2014.

REFERENCES

[1] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. CRePE:
Context-related policy enforcement for android. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 6531 LNCS,
pages 331–345, 2011.

[2] Valerio Arena, Vincenzo Catania, Giuseppe La Torre, Salvatore Mon-
teleone, and Fabio Ricciato. SecureDroid: An Android security frame-
work extension for context-aware policy enforcement. 2013 Interna-
tional Conference on Privacy and Security in Mobile Systems (PRISMS),
pages 1–8, June 2013.

[3] OASIS. Xacml. http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.html. Accesed: 2014-12-30.

[4] Marwan Cheaito, Romain Laborde, François Barrère, and Abdelmalek
Benzekri. An extensible XACML authorization decision engine for
context aware applications. In 2009 Joint Conferences on Pervasive
Computing, JCPC 2009, pages 377–382, 2009.

[5] Xu Feng, Lin Guoyan, Huang Hao, and Xie Li. Role-based access con-
trol system for web services. In Computer and Information Technology,
2004. CIT’04. The Fourth International Conference on, pages 357–362.
IEEE, 2004.

[6] Anind K. Dey. Understanding and using context. Personal and
Ubiquitous Computing, 5:4–7, 2001.

[7] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile
Computing Research. Technical report, Dartmouth College Hanover,
2000.

[8] Openmoko Project. Openmoko. http://www.openmoko.org. Accessed:
2014-12-30.

[9] OMTP Project. Omtp. http://www.omtp.org. Accessed: 2014-12-30.

[10] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex : Ex-
tending Android Permission Model and Enforcement with User-defined
Runtime Constraints. ASIACCS ’10 Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security,
pages 328–332, 2010.

[11] Google. Dashboards — Android Developers. https://developer.android.
com/about/dashboards/index.html. (Visited on 02/03/2015).

[12] DS Kim, TH Shin, and JS Park. Access control and authorization
for security of RFID multi-domain using SAML and XACML. . . .
Intelligence and Security, 2006 . . . , pages 587–590, 2006.

[13] Marcel Bokhorst. Xprivacy. http://www.xprivacy.eu. Accesed: 2014-12-
30.

[14] Google. Running in a Background Service — Android
Developers. http://developer.android.com/training/run-background-
service/index.html.

[15] AT&T. AT&T XACML 3.0 Implementation. https://github.com/att/
XACML. Accessed: 2016-02-22.

[16] Hans-Christoph Steiner. Improving trust and
flexibility in interactions between Android apps.
https://guardianproject.info/2014/01/21/improving-trust-and-flexibility-

in-interactions-between-android-apps/, 01 2014.

