
A Survey on Secure Communication Protocols for IoT Systems
(Invited Paper)

Dan Dragomir∗, Laura Gheorghe§, Sergiu Costea∗ and Alexandru Radovici∗
∗Computer Science and Engineering Department

University Politehnica of Bucharest
Bucharest, Romania

Email: {dan.dragomir, sergiu.costea, alexandru.radovici}@cs.pub.ro
§Research and Development Department

Academy of Romanian Scientists
Bucharest, Romania

laura.gheorghe@cs.pub.ro

Abstract—The Internet of Things (IoT) integrates a large
number of physical objects that are uniquely identified, ubiqui-
tously interconnected and accessible through the Internet. IoT
aims to transform any object in the real-world into a computing
device that has sensing, communication and control capabili-
ties. There is a growing number of IoT devices and applications
and this leads to an increase in the number and complexity
of malicious attacks. It is important to protect IoT systems
against malicious attacks, especially to prevent attackers from
obtaining control over the devices. A large number of security
research solutions for IoT have been proposed in the last years,
but most of them are not standardized or interoperable. In
this paper, we investigate the security capabilities of existing
protocols and networking stacks for IoT. We focus on solutions
specified by well-known standardization bodies such as IEEE
and IETF, and industry alliances, such as NFC Forum, ZigBee
Alliance, Thread Group and LoRa Alliance.

Keywords-Internet of Things; security; standard; authenti-
cation; confidentiality; integrity.

I. INTRODUCTION

The Internet of Things (IoT) represents the interconnec-
tion, through the Internet, of a large number of ’Things’
– uniquely identifiable physical objects with sensing, com-
munication and actuation capabilities. The term has been
introduced by Kevin Ashton in 1999 in the context of chain
supply management [1], [2], [3], [4], [5], [6].

There are currently 5 billion smart objects connected to
the Internet, and it is expected that there will be 25 billion
by 2020 [7]. The integration of ’Things’ in the Internet is
challenging because they may have characteristics such as
limited memory, processing capacity and energy resources.

Most products were initially developed as closed propri-
etary solutions that were incompatbile with devices from
other vendors [8]. The current trend however is towards
standardized and interoperable protocols [9].

The number of IoT applications is growing. It includes
smart home, healthcare monitoring, smart city, utilities,
smart agriculture and animal farming, security and emer-
gencies, smart water, industrial control, smart transportation,

environment monitoring, etc. [10]. These IoT applications
handle sensitive information regarding people and com-
panies, which should not be disclosed to attackers and
unauthorized persons.

As the field of IoT expands, attacks against IoT sys-
tems are growing in number and complexity [11]. Attacks
against IoT systems aim to steal sensitive data, inject false
information or disrupt the normal functionality of networks
and services [3]. Recent attacks exploited vulnerabilities in
smart refrigerators, in medical devices and smart cars [12].
Some attacks may involve considerable risk, for example,
hacking medical devices may lead to the loss of human lives.
Therefore it is important to ensure the security of critical IoT
systems by providing protection against malicious attacks
and failures.

In general, information security deals with confidentiality,
integrity and availability (CIA) [1], [13], [14]. Schneier
states that in the Internet of Things, attacks against integrity
and availability are more important than attacks against con-
fidentiality [12]. For example, in a smart home environment
with a smart lock, it is more important to prevent an attacker
from controlling the lock (to enter the house or block the
door), than from finding out that someone has entered the
house. In a similar manner it is more important to prevent an
attacker from controlling your car, than from eavesdropping
on your location. The main challenge in IoT security is to
prevent attackers from obtaining control over the IoT system.

This paper presents a survey of the most used commu-
nication protocols for IoT and their security capabilities.
Although many research solutions for IoT provide security,
they are generally not standardized or interoperable. In this
paper, we focus on standardized protocols and networking
stacks because interoperability is important for the large-
scale adoption of the IoT. We investigate solutions speci-
fied by industry alliances, such as LoRa Alliance, ZigBee
Alliance, Thread Group, NFC Forum, and leading standard-
ization bodies, such as IEEE and IETF.

This paper is organized as follows. Section 2 presents the



security requirements for IoT systems. Section 3 investigates
the security capabilities provided by IoT communication
protocols and networking stacks. Finally, Section 4 presents
a comparative evaluation and Section 5 includes conclusions
and future work.

II. SECURITY REQUIREMENTS

Vasilomanolakis et al. [9] classify security requirements
in five categories: Network Security, Identity Management,
Privacy, Trust and Resilience.

1) Network Security: Network security requirements in-
clude: confidentiality, integrity, origin authentication, fresh-
ness and availability [15].

In many IoT applications, such as healthcare or military
applications, the sensitive data transmitted through the net-
work should not be disclosed to unauthorized entities [11].
An attacker may eavesdrop on network traffic and extract
sensitive information. Message confidentiality ensures that
the contents of the message cannot be understood by anyone
other than the desired recipients [15].

In critical IoT applications, the modification of sensitive
data or the injection of invalid data may lead to the loss
of human lives, for example in remote health monitoring
systems [11]. An attacker may intercept network packets,
modify their contents and inject them back into the network.
In order to prevent the modification of messages by mali-
cious or faulty devices, message integrity must be ensured.

Authentication refers to two different security require-
ments: entity authentication and data origin authentication.
Data origin authentication ensures that a message originates
from a certain entity [16]. In order to prevent the injection
of invalid data by malicious external devices, the IoT system
must provide data origin authentication.

An attacker may inject false information into the network
by recording messages and replaying them. Message fresh-
ness ensures that attackers cannot reinject information.

Some IoT applications rely on real-time data collection
and correct functionality of services. An attacker may disrupt
the functionality of the IoT system by blocking network
packets or by causing services to fail. Availability ensures
that the devices and services are reachable and operating
correctly whenever needed, in a timely manner [13]. Avail-
ability is directly related to resilience to attacks and failures.

This paper gives an overview of standardized and popular
protocols that satisfy network security requirements.

2) Identity Management: Identity management represents
an important challenge in IoT systems due to the complex
relationships between entities (devices, services, service
providers, owners and users) [9]. Identity management re-
quirements include authentication, authorization, revocation
and accountability [9].

Entity authentication refers to ensuring that an entity is
who it claims to be [16]. More specifically, device authenti-

cation refers to verifying the unique and correct identity of
the communicating devices in the IoT network [17].

Authorization allows authenticated entities to perform
certain operations in the IoT system [11]. This means that
each authenticated entity has permissions to perform specific
operations. Revocation refers to removing the permission to
perform an operation of a certain entity.

Accountability ensures that operations are clearly bound
to authenticated entities. In large scale IoT systems, it is a
challenge to provide accountability due to the considerable
amount of devices, access delegation and multiple organiza-
tional domains [9].

3) Privacy: Privacy requirements refer to data privacy,
anonymity, pseudonymity and unlinkability [9]. Privacy is an
important challenge in IoT systems because users require
the protection of their personal data because it provides
information about their habits, interactions and location [18].

In IoT, the collected data may be Personally Identifiable
Information (PII): data that identifies a person [19]. Data
privacy implies that the collected data does not expose
information about a person, for example its identity [9].

Anonymity means that a certain person cannot be identified
as a source of data or action [20]. In some cases IoT appli-
cations need to comply to the data minimization laws [9].

Pseudonymity is a tradeoff between anonymity and ac-
countability, as it links the data and actions to a pseudonym
instead of a person [20]. Unlinkability means that the data
or actions related to the same person cannot be linked
together [9].

4) Trust: Trust requirements deal with data trust and
entity trust [9]. Other dimensions of trust are processing
trust, connection trust and system trust [19].

In IoT, data may be collected by potentially untrusted
devices. Trustworthy data can be obtained by applying
different algorithms like data aggregation or machine learn-
ing [9].

Entity trust refers to the expected behavior of entities,
such as devices, services and users. Device trust relates to the
interaction with reliable devices [19] and can be established
through trusted computing [9].

5) Resilience: Large scale IoT systems are prone to
attacks and failures due to the complexity and variety of
hardware and software. Therefore, it is important to ensure
resilience and robustness against malicious attacks and fail-
ures [9].

Intrusion detection and prevention systems provide pro-
tection against malicious attacks [15]. Failover and recovery
mechanisms ensure resilience and help maintain normal
operation [9].

III. COMMUNICATION PROTOCOLS AND NETWORKING
STACKS

This section provides in-depth investigation of IoT com-
munication protocols and networking stacks and their secu-



Table I
SECURITY LEVELS IN IEEE 802.15.4

Security level Protection
0 None
1 MIC-32
2 MIC-64
3 MIC-128
4 Encryption
5 Encryption and MIC-32
6 Encryption and MIC-64
7 Encryption and MIC-128

rity capabilities.

A. IEEE 802.15.4

The IEEE 802.15.4 standard [21] was designed as a basis
for a protocol stack oriented towards short range, low data-
rate and energy efficient communication. It was originally
introduced in 2003, with several revisions and additions over
the years, and defines the physical (PHY) and Medium Ac-
cess Control (MAC) layers for short range communications
at 250Kbps. The latest version of the standard was released
in 2015 and includes previously released amendments that
add additional PHY layers and modifications to the MAC
layer which better support industrial markets.

While in IEEE 802.15.4 the PHY layer does not offer any
security, the MAC layer provides multiple security levels, as
described in Table I. All security services as based on the
AES-128 block cipher [22] coupled with the CCM* mode of
operation [23]. Although the standard specifies security as
optional, the effect of having AES-128 in the specification
is that most IEEE 802.15.4 compatible hardware platforms
(the popular CC2420 [24] or the newer CC2520 [25]
transceivers from Texas Instruments or the ATmega128RFA1
and variants SoC from Atmel [26]) implement some form
of hardware acceleration for AES-128. This ensures that
the energy cost of enabling security on these platforms is
minimal. Having almost ubiquitous support for the AES-128
cipher in hardware means that higher layer protocols can
also define their security services on top of AES-128 with
minimal impact on the energy efficiency of the device. Even
if MAC layer security is not employed in a given scenario,
the device can still benefit from security at the network or
application layers.

In IEEE 802.15.4 communications, secure MAC frames
are identified by the Security Enabled flag inside the Frame
Control field. This flag also signals the presence of the
Auxiliary Security Header which contains information about
how the frame is to be secured. The Security Level field
selects one of the security levels from Table I applied to
the frame. A security level of 0 means that the frame is
sent unsecured, while security levels from 1 to 3 and 5
to 7 mean that the frames are protected by a Message
Integrity Code of the given length, ensuring integrity and
origin authentication. These properties apply to the entire

MAC frame, except the Frame Check Sequence. Security
levels 4 to 7 provide encryption for the payload part of
the MAC frame, ensuring its confidentiality. All CCM*
operations also use a nonce value of 13 bytes formed from
the concatenation of the frame’s Source Address and Frame
Counter and Security Level fields from the Auxiliary Security
Header which ensures freshness, as well as semantic security
for the encrypted payload.

The IEEE 802.15.4 specification does not define how
to do key management. The AES-128 block cipher uses
128 bit symmetric keys, but the generation, distribution and
replacement of those keys is left for the upper layers. The
standard does however include a key storing system inside
the MAC PAN Information Base and a way of implementing
a form of access control at the MAC layer, with pair-wise
keys or group keys, through the use of the MAC PIB and
the Key Source field inside the Auxiliary Security Header.

B. WiFi

WiFi communications are defined by the 802.11 family of
standards, with the first one introduced in 1997 [27]. Popular
older standards include 802.11a, 802.11b, and 802.11g. Most
devices support the newer standards 802.11n (published in
2009) [28] and 802.11ac (published in 2014) [29].

WiFi networks often operate in congested wireless en-
vironments, which might lead to interference and degrada-
tion of performance. WiFi communications use frequency
bands around 2.4 GHz and 5 GHz; devices operate on
frequency ranges centered on preset channels located within
those bands. The list of available channels depends on
geographical regions. For example, in the 2.4GHz range, 11
channels exist in the US while 13 channels exist in Europe.
The channels are 5MHz apart, with channel 1 centered at
2.412GHz.

WiFi standards use different channel widths. For example,
802.11n can use channels with a width of up to 40MHz
while 802.11ac mandates the use of channels with a width of
80MHz (and can even reach 160MHz). If two WiFi network
channels overlap, interference can lead to lower throughput
or even loss of connectivity. Wireless devices often support
dynamic selection of channels, but in severely congested
industrial environments planning which frequencies are in
use can lead to better performance.

WiFi networks support both open communication (i.e., in
plain text) and encrypted communication. Due to the multi-
access medium, messages are easily intercepted; encryption
is preferable despite additional energy costs.

Possible security protocols include Wireless Equivalent
Privacy (WEP) and Wi-Fi Protected Access version 1 or 2
(WPA or WPA2). Efficient attacks exist for WEP, and its use
is discouraged. Vulnerabilities have also been identified in
WPA [30]. WPA2 (introduced in 802.11i-2004) is the current
recommendation, and is available on all WiFi certified
devices.



Two authentication methods are supported by WPA2: per-
sonal, which uses pre-shared keys, and enterprise, which re-
quires an additional RADIUS authentication server and can
use multiple underlying authentication mechanisms through
Extensible Authentication Protocols (EAP). For pre-shared
keys, the overall security of the wireless network relies on
choosing a secret key that is hard to guess.

When a client initially connects to an access point, WPA2
uses a secure challenge-based handshake to test whether both
devices have the same pre-shared key. The handshake never
reveals the pre-shared key. The purpose of the handshake is
to derive a temporary secret key for encryption and integrity.

For encryption and integrity, WPA2 supports Counter-
Mode CBC-MAC Protocol (CCMP) or Temporal Key In-
tegrity Protocol (TKIP). CCMP uses AES-128 (128-bit
keys and 128-bit blocks) in Counter-Mode with CBC-MAC
(CCM) mode of operation. Attacks exist against TKIP [30]
and it is no longer recommended as of standard 802.11-2012.

Setting WPA2 with CCMP is the recommended method
for securing WiFi. Other security measures include: (1) hid-
ing access point network announcements (SSID broadcasts,
used to announce network names in an area), (2) allowing
or denying station-access point associations based on the
stations hardware address, (3) lowering transmit power of
base station to reduce communication range. However, they
can all be easily bypassed by a determined attacker.

WiFi is a secure choice for IoT communications. It
allows for a throughput of up to 1Gbps (for 802.11ac) and
security; IEEE proposed 802.11ac for use cases in which
HD video streaming is a necessity, such as car cameras,
factory floor automation or medical cameras. However, WiFi
interfaces use more power compared to other communication
technologies; this makes it undesirable for remote sensors
with limited battery power.

C. NFC

Near Field Communication (NFC) is a set of short-range
communication technologies, operating over electromagnetic
fields at a frequency of 13.56MHz over distances of about
10cm. NFC specifications are developed by the NFC Forum,
an association composed of companies with interest in NFC.
NFC operation is described in standards ISO/IEC 14443
[31], ISO/IEC 18092 [32] and JISX6319-4 [33].

NFC devices communicate by generating electromagnetic
fields. In an active communication, both devices generate
their own fields. In a passive communication, one device
transmits data by modulating the field generated by the
active device.

NFC is used to read and write information stored in tags.
Five types of tags are currently supported by the NFC forum,
with types 1, 2 and 4 described in ISO/IEC 14443, type 3
in JISX6319-4 and type 5 in ISO/IEC 15693 [34].

Older NFC standards did not include any notion of com-
munication security. This made NFC exchanges vulnerable

to eavesdropping, data modification, and data insertion [35].
More complex attacks, such as man in the middle, were
considered unfeasible due to the physical properties of the
generated fields. Relay attacks – where an attacker makes
devices that are far apart talk to each other – were also
shown to be possible.

Methods of generating secure secrets were proposed [35],
but are not standardized.

NFC security comes from the physical proximity. In
practical scenarios, the two honest interacting parties need to
be within a range of 10cm. Eavesdropping adversaries, for
example, need to be closer than a few metres to reliably read
exchanged information. The range decreases depending on
how the signal is modulated and the type of communication
(i.e. passive communications are harder to eavesdrop).

If applications require security, it needs to be implemented
at higher levels. For example, SSL can be implemented
on top of the low-level NFC protocol to provide secure
communication channels.

In 2015, the NFC Forum introduced the Signature Record
Type Definition (RTD 2.0) technical specification, which
describes how NFC devices can supply authenticated data.
This is an update to RTD 1.0, introduced in 2010. The
specification lists the algorithms and message formats that
NFC devices can use to provide authenticated information.

RTDs use certificates to sign information. A NFC party
obtains a signed certificate from a certificate authority, and
then uses the associated private key to sign NFC tag data.
The result is a Signed NFC Data Exchange Format (NDEF)
message, which contains both the signed data and the
signature. NFC readers then read the NDEF message, verify
the signature using a local list of trusted root certificates
and accept the data only if the verification succeeds. This
protects against forgery attempts where attackers attempt to
supply information to NFC readers on behalf of another
party. Currently, RTDs support X.509 and M2M certifi-
cates. The supported cryptosystems include RSA, DSA and
ECDSA signatures with SHA-256 hashes, providing from
80 up to 128 bits of security.

D. LoRaWAN

Low-Power, Wide-Area Networks (LPWAN) are designed
to integrate billions of devices in the Internet of Things [36].
LPWAN technologies complement short range and cellular
networks, by providing long battery life (up to 10 years),
large communication range and low cost devices [37].

Long Range Wide-Area Network (LoRaWAN) is a LP-
WAN optimized to have large capacity and range, and
low energy consumption and cost. LoRa Alliance is an
open, non-profit association of members that collaborate to
develop LoRaWAN open standard [38].

LoRaWAN networks have a star-of-stars topology, in
which end-devices send messages to gateways, which relay
these messages to a central server [38]. End-devices use



single-hop LoRa communication with one of the gateways.
The gateways communicate with the server through IP
connections.

LoRaWAN standard includes two security layers: one
for the network and one for the application. Network-
layer security ensures device authentication and Application-
layer security ensures the protection of the application data
(confidentiality, integrity).

When an end-device is added to the LoRaWAN network,
it needs to be personalized and activated [38]. Activation
of an end-device can be performed either through Over-
The-Air-Activation (OTAA) or through Activation by Per-
sonalization (ABP). OTAA is executed when the device is
deployed or reset, and ABP includes both personalization
and activation. OTAA enables devices to execute a joining
procedure before sending any data messages in the network.
For this, the end-device needs to be personalized with the
following information before the join procedure: a globally
unique device identifier (DevEUI), an application idenitifier
(AppEUI) and an AES-128 key (AppKey).

AppKey is an AES-128 application key for a certain end-
device. This key is allocated by the application owner to
the device and is derived from the application-specific root
key that is handled by the application provider. AppKey
is used to derive the network session key (NwkSKey) and
the application session key (AppSKey) when the end-device
joins a LoRaWAN network through OTAA.

After the activation, the device stores a device address
(DevAddr), an application identifier (AppEUI), a network
session key (NwkSKey) and an application session key
(AppSKey). NwkSKey is the network session key for a
certain end-device. This is used by the end-device and the
server to compute and verify the message integrity code
(MIC). It is also used for encrypting and decrypting the
payload of the MAC-only data messages. NwkSKey is used
for encrypting and verifying network communication.

AppSKey is the application session key for a certain
end-device. It is used by the end-device and the server to
encrypt and decrypt the payload of application-specific data
messages. It may also be used for computing and verifying
an application-level MIC (which may be included in the
payload of application-specific data messages). AppSKey is
used for encrypting and verifying application data.

ABT means that DevAddr, NwkSKey and AppSKey
are directly written on the end-device instead of DevEUI,
AppEUI and AppKey. Each device has its unique set of
session keys, so if a device is compromised, it does not affect
the secure communication of other devices in the LoRaWAN
network.

At the Media Access Control layer, the frame payload
(FRMPayload) is encrypted and then a 4-byte MIC is com-
puted [38]. The cryptographic algorithm used for encryption
is based on the one used in IEEE 802.15.4 [21], AES with
a key of 128 bits. The key used for encryption depends

on the value of the Port field (FPort), if FPort is equal to
0, NwkSKey is used, and if FPort is between 1 and 255,
AppSKey is used. FPort is equal to 0 when FRMPayload
contains only MAC commands, and greater than 0 when it
includes application-specific data.

For each data message, considering payload =
FRMPayload, a number of blocks Ai are generated, where
i = 1..k with k = ceil(len(payload)/16). Each block gets
encrypted using AES-128: Si = AES-128 encrypt(K,Ai)
and all blocks are concatenated S = S1|S2|..|Sk. Then
(payload|pad16) xor S is computed and truncated to the
number of octets of the initial payload (len(payload)). This
way LoRaWAN provides data confidentiality.

After the frame payload is encrypted, a message integrity
code (MIC) is computed over all the fields in the message.
The algorithm used for computing the MIC is CMAC based
on AES-128, as in Formula 1. The MIC ensures both data
integrity and data origin authentication.

msg = MHDR|FHDR|FPort|FRMPayload

cmac = AES-128 cmac(NwkSKey,B0|msg)

MIC = cmac[0..3]

(1)

The join procedure consists of two MAC-layer messages
exchanged between the joining end-device and the server
(join-request and join-accept). The MIC for the join-request
message is computed as in Formula 2, where DevNonce is a
random value of 2 bytes (this provides anti-replay protection
for join-request messages). The join-request message is not
encrypted.

cmac = AES-128 cmac(AppKey,MHDR|AppEUI|
DevEUI|DevNonce)

MIC = cmac[0..3]
(2)

The join-accept message includes information that is used
for deriving the NwkSKey and AppSKey. The MIC for
the join-accept message is computed as in Formula 3. The
message is encrypted by the server using AppKey as in
Formula 4 - the server uses an AES decrypt operation in
ECB mode, in order to allow the end-device to use the
associated encrypt operation. This is an optimization that
allows the end-device to implement only the AES encrypt
operation.

cmac = AES-128 cmac(AppKey,MHDR|
AppNonce|NetID|DevAddr|

RFU |RxDelay|CFList)

MIC = cmac[0..3]

(3)

AES-128 decrypt(AppKey,AppNonce|NetID|
DevAddr|RFU |RxDelay|CFList|MIC)

(4)



After the join-accept message is received from the server,
the session keys can be generated as in Formula 5.

NwkSKey = AES-128 encrypt(AppKey, 0x01|
AppNonce|NetID|DevNonce|pad16)

AppSKey = AES-128 encrypt(AppKey, 0x02|
AppNonce|NetID|DevNonce|pad16)

(5)

E. Z-Wave

Z-Wave is a low-power wireless communication protocol,
designed by Sigma Designs, Inc., for remote control applica-
tions in residential and small-size commercial environments
[39], [40], [41]. The protocol specification and software
development kit are not open and are available only to
the device manufacturers that signed a contract with Sigma
Designs, Inc. [42]. Z-Wave is a complete protocol stack that
covers all layers, from physical to application layer.

At the physical layer, Z-Wave operates in the Industrial,
Scientific and Medical (ISM) radio frequency band, us-
ing low-bandwidth data communication frequencies: 868.42
MHz in Europe and 908.42 MHz in the United States [42].
It adheres to the ITU-T G.9959 PHY and MAC layer spec-
ification for sub GHz radio communications [43][44]. This
way, it avoids interference with the wireless technologies
in the 2.4 GHz range (Wi-Fi, Bluetooth, ZigBee, etc.) [42].
Z-Wave provides a range of 30 meters for point-to-point
communications [41] and allows a transmission rate of up
to 100 kbps [39].

A Z-Wave mesh network consists in a controller device
and up to 232 nodes. Each controller device has a unique
32-bit Home ID, which is the identifier of the Z-Wave
network. This ID is written by the manufacturer on the chip
and cannot be changed in software. This prevents malicious
controller devices from using a spoofed Home ID and
collecting information from homes. In addition, controller
devices do not support promiscuous mode, so they are not
able to intercept all network traffic.

When secure transmission mode is enabled, the frame
payload is encrypted and an 8-byte authentication header
is added at the end of the frame, before the checksum.
The checksum algorithm is described in the ITU-T G.9959
standard.

In the initial setup period (or re-installation), the controller
device and the nodes exchange a network key (Kn). This
key is generated by the controller using a hardware-based
pseudo-random number generator (PRNG) and encrypted
using a default key hardcoded in firmware. From this key, all
devices derive two 128-bit keys: a data origin authentication
key (Km) and a payload encryption key (Kc). These keys
are obtained by encrypting two 16-byte values hardcoded in
firmware using AES in ECB operation mode and the network
key, as in Equation 6 [42].

Km = AES-ECBKn(Passwdm)

Kc = AES-ECBKn(Passwdc)
(6)

Z-Wave computes a Message Authentication Code (MAC)
using CBC-MAC with AES, the 8 bytes authentication
header, in order to ensure data origin authentication and
data integrity. It also uses 64-bit nonce values (generated
using PRNG) when computing the MAC in order to provide
anti-replay protection (freshness). According to Fouladi et
al., the MAC is computed using Equation 7 [42].

MAC = AES-CBC-MACKm(IV,

SH||SRC||DST ||LEN ||C)
(7)

IV is a 16-byte initialization value composed of 8 bytes
generated using PRNG and 8 bytes representing the nonce
received from the destination. SH is the security header,
which is an one byte value that represents the type of
message and is equal to 0x40 for nonce request, 0x80 for
nonce reply and 0x81 for encrypted data. SRC and DST are
the source and destination device IDs. LEN is the length of
the encrypted payload and C is the actual encrypted payload.

The frame payload is encrypted using AES in OFB
operation mode, according to Equation 8 [42], in order to
provide data confidentiality. P is the plain text Z-Wave
payload.

C = AES-OFBKc(IV, P ) (8)

F. Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a technology introduced
by the Bluetooth Special Interest Group (SIG) in the 4.0
version of the Bluetooth protocol specification. Also known
as Bluetooth Smart, it reduces energy consumption and
device costs when compared with classic Bluetooth. The
Bluetooth specification [45] defines a complete communi-
cation stack for BLE composed of the physical layer, the
link layer, the Logical Link Control and Adaptation Protocol
(L2CAP), which multiplexes the upper layer protocols, the
Attribute Protocol (ATT), which defines a way of discov-
ering and transporting attributes (values) and the Generic
Attribute Profile (GATT), which defines a framework based
on ATT for defining services. The stack is split between the
Controller, which implements the physical and link layers,
and the Host, which implements the upper layers. These
two components communicate with each other using the
standardized Host Controller Interface.

The BLE specification defines two mechanisms for secu-
rity, called LE security mode 1 and LE security mode 2.

In security mode 1, security is applied at the link layer
and supports encryption and data signing using the AES-128
[22] block cipher and the CCM [23] mode of operation with
different levels of authentication:



• Level 1: no security is applied;
• Level 2: encryption and data signing are applied, but

no authentication is performed during key exchange;
• Level 3: security is applied, but the pairing procedure

which produces the shared key is performed with a
vulnerable algorithm;

• Level 4: pairing no longer is vulnerable due to using
Elliptic Curve Diffie-Hellman with the P-256 curve [46]
for deriving the shared key.

The Message Authentication Code, called Message In-
tegrity Check (MIC) in the Bluetooth specification, used for
data signing has a length of 4 bytes and is computed over the
link layer payload and the first byte of the link level header.
The 13-byte nonce required by CCM is formed from a 39-
bit packet counter, incremented for each packet sent, a 1-bit
direction flag and an 8-byte initialization vector exchanged
by the communicating devices.

In security mode 2, security is applied on the ATT layer
and only supports data signing. The MIC for this security
mode is 8-byte long and is computed using CMAC [47]
and the AES-128 block cipher, from the concatenation of
the transmitted data and a 32-bit counter. The counter is
incremented for every message signed in order to protect
against replay attacks. Because LE security mode 1 levels
2, 3 and 4 already offer data signing, LE security mode 2
is only applied over unencrypted connections.

BLE defines three shared keys for security purposes, all
of them 128-bit long [48]:

• Long Term Key (LTK), used in deriving the key used
by the link layer;

• Connection Signature Resolving Key (CSRK), used by
the ATT layer for data signing;

• Identity Resolving Key (IRK), which is used to ensure
privacy, after a connection is established between de-
vices, by generating a new private device address which
the other peer can resolve using the shared IRK.

The security of the entire communication depends not
only on the security of the ciphers used, for which there are
no known practical attacks, but also on the method used for
establishing the shared keys [49]. In BLE, the shared keys
are established in the pairing step, using 1 of the 4 defined
association modes to first establish a Temporary Key.

The Just Works mode is insecure as the TK has a
known fixed value and an attacker can perform a Man-
In-The-Middle attack or can passively intercept the pairing
procedure and obtain the rest of the shared keys. This mode
is used by devices which have no input/output capabilities
and cannot ask the user for a confirmation.

The Out-of-Band mode is secure if the out-of-band tech-
nology used to transfer the TK is secure in itself. Very few
devices however are equipped with the necessary hardware
to perform an association using this mode.

The remaining modes Numeric Comparison and Passkey
Entry are secure starting with version 4.2 of the Bluetooth

specification, which adds the ECDH key exchange algorithm
for BLE devices [48]. Before this version, only the Passkey
Entry method was available and it was using an algorithm
different than Diffie-Hellman to establish the TK. With only
1, 000, 000 possibilities for the passkey, the method could
be easily brute-forced to extract the TK [49] and then the
rest of the shared keys.

G. Thread

Thread is an open standard protocol stack that provides
low-power, low-cost, wireless IPv6 communication for smart
home devices [50]. It has been designed by Thread Group,
which is an Internet of Things standards group that includes
Google’s Nest Labs, Samsung, ARM, Freescale, and oth-
ers [40]. Thread protocol stack includes: IEEE 802.15.4
PHY and MAC layers, 6LoWPAN, Distance Vector Routing
(DVR), UDP, and DTLS.

The Thread standard is based on IEEE 802.15.4 PHY and
MAC layers [21], using the 2.4 GHz frequency band and
250 kpbs. The MAC layer provides message confidentiality
and integrity protection based on keys that are obtained by
the higher layers of the stack. The network layer is build
on top of this MAC layer and provides reliable end-to-end
communication [50]. Thread ensures data confidentiality,
integrity, and authentication.

In Thread the IEEE 802.15.4 MAC layer secures frames
using a network-wide key. This provides weak security and
is not the only method of securing the messages. However,
the network-wide key is used to differentiate between a
Joiner device and an authenticated and authorized Thread
device. This key will be delivered securely (using a Key
Encryption Key) to a Joiner device.

Network authentication and key agreement is based on an
elliptic curve variant of J-PAKE (EC-JPAKE): a password-
authenticated key exchange with ”juggling” using NIST P-
256 elliptic curve [51]. This means that it uses elliptic curve
Diffie Hellmann for key agreement and Schnorr signatures as
Non-Interactive Zero-Knowledge (NIZK) proof mechanism
[52] for the authentication between two peers and for estab-
lishing a shared key between them based on the passphrase
[53]. Thread integrates EC-JPAKE with DTLS in order to
provide security.

A Joiner device is initially untrusted and has to be
verified using a policing mechanism: the Joiner node has to
identify a Joiner Router and communicate only with it. In
order to authenticate itself, the device must initiate a DTLS
handshake. The Joiner Router will receive all network traffic
from the Joiner node and forward it to the Commissioner in
a controlled manner, in order to allow the DTLS handshake
to be performed [53]. This means that the Joiner Router must
relay the authentication traffic between the Joiner node and
the Commissioner. This is achieved using a Commissioning
relay protocol that provides encapsulation and relaying of
the DTLS handshake.



The Commissioning protocol is called MeshCoP and is
based on CoAP. It performs petitioning, relay, management
and maintenance operations. The Commissioner will use the
protocol to maintain a secure communication session alive
and to change network parameters.

H. ZigBee

ZigBee is a wireless communication specification [54]
defined by the ZigBee Alliance for use in sensor networks
applications. It provides a complete protocol stack to foster
interoperability between devices from different manufactur-
ers. The ZigBee stack builds on top of the IEEE 802.15.4
standard, which provides the PHY and MAC layers. This
makes the ZigBee specification compatible with all 802.15.4
hardware. ZigBee defines a network layer (NWK) which
supports star, tree and mesh routing and a framework for
building the application layer composed of the application
support sub-layer (APS) and the ZigBee device objects
(ZDO), which the application uses to build its own applica-
tion objects.

As for the communication stack, the security of ZigBee
is built on top of the security services provided by the IEEE
802.15.4 standard [55]. Although ZigBee doesn’t directly
use the MAC layer security defined in 802.15.4 [56], it
uses the same AES-128 block cipher and CCM* mode of
operation to secure transmissions at both the NWK and
APS layers. The principle that ”the layer that originates a
frame is responsible for initially securing it” is employed,
which means that if a NWK command frame needs pro-
tection, the protection will be applied at the NWK layer.
Because the specification is targeted at low-cost devices, no
security separation is assumed between stack layers. The
consequence of this is that the same key can be shared
by multiple layers, decreasing complexity and storage costs
associated with security keys. The ZigBee specification also
defines a set of security levels that mirror the security
levels of IEEE 802.15.4 (Table I) and, depending and the
level, provide the same protections (i.e integrity, origin
authentication, confidentiality and/or freshness) as described
in section III-A. Unlike the 802.15.4 standard, in ZigBee the
security level is common to the whole network and cannot
be changed on a per frame basis.

Unlike IEEE 802.15.4, ZigBee defines how key man-
agement is handled, making the specification complete and
ready for deployment. For securing ordinary data commu-
nication ZigBee defines two types of keys: the network key,
which is shared by all devices in a ZigBee network and
offers protection against adversaries outside the network and
multiple link keys, which are shared only between pairs of
devices and offer end-to-end security between two devices.
For specialized purposes there exists also a master key,
used in establishing link keys via the Symmetric-Key Key
Establishment (SKKE) protocol and key-transport and key-
load keys, used in securing messages containing other keys.

The key-transport and key-load keys are derived from the
link key using HMAC [57] and the Matyas-Meyer-Oseas
hash function instantiated with the AES-128 block cipher.

All keys used by ZigBee are 128 bits in length and the
security of the specification rests on the secure initialization
and installation of these keys. There are two mechanisms
for obtaining a required key: the first is to have the key
preinstalled on the device and the second is to obtain the key
from a special node, the Trust Center, which is trusted by all
nodes in the network. The Trust Center is also responsible
with network management, accepting or rejecting nodes into
the network.

For nodes joining the network that have no preinstalled
keys, there is no way for the Trust Center to securely
transport the required keys to the node in the join procedure.
In this case the ZigBee specification allows for the key to be
transported unsecured on the last hop to the joining node.
For applications that allow such unsecured transportation
of keys there is a small window of vulnerability when
network security can be compromised by a passive attacker.
The specification assumes that security is ensured through
non-cryptographic means in this case, and recommends
transmitting the key after external input to the nodes, only
once, at low power to evade passive attacks.

I. 6LoWPAN

The IPv6 over Low power Wireless Personal Area Net-
works (6LoWPAN) [58] is a network layer protocol stan-
dardized by IETF for enabling Internet connectivity on
devices with constrained resources. The initial 6LoWPAN
specification describes the frame format and different header
compression schemes for IPv6 packets when transmitted
over IEEE 802.15.4 networks. Other specifications have
been standardized for supporting IPv6 over Bluetooth Low
Energy connections [59] or over ITU-T G.9959 networks
[60] (used in the Z-Wave stack) and more documents are in
the process of being standardized for using IPv6 over NFC
[61], over DECT Ultra Low Energy [62] or over MS/TP
[63] (a component in the building automation stack BACnet).
Using 6LoWPAN resource constrained devices can achieve
end-to-end connectivity with any other IPv6 enabled host.

The 6LoWPAN specification does not define any security
mechanisms. It relies on securing communications with the
mechanism available at the link-layer (e.g. IEEE 802.15.4
security - described in section III-A) or at the upper layer
(e.g. CoAP - described in section III-L). An academic
proposal exists for extending 6LoWPAN with IPSec using
header compression techniques [64] [65] and comparisons
with link-layer security [66] show that it scales better as
data size and number of hops grow.

J. RPL

The IPv6 Routing Protocol for Low-Power and Lossy Net-
works (RPL) [67] is a network layer protocol standardized



by IETF, complementary to 6LoWPAN (section III-I), that
describes the way by which routing is done inside Low-
Power and Lossy Networks (LLNs). The protocol defines the
RPL messages exchanged between LLN nodes over ICMPv6
and how they are used to determine routing tables inside the
LLN. Point-to-point traffic inside the LLN is supported as
well as point-to-multipoint with the central node of the LLN.

The RPL specification provides a number of security
mechanisms to protect against attacks on routing informa-
tion. Three security modes are defined by the specification:
unsecured, preinstalled and authenticated. A security bit
inside the RPL packet distinguishes between secure and
unsecure versions of the RPL control messages.

The unsecure version of the RPL control messages is de-
signed to lower overhead when security is already provided
by the link-layer (as possible with IEEE 802.15.4 - section
III-I). If security is not provided at any layer, a number of
attacks are possible against RPL [68].

The secure versions of the RPL control messages add
a Security Section to the RPL header which identifies
what type of security was used to protect a given packet.
All combinations of security settings provide at least data
integrity and replay protection, with optional confidentiality
and delay protection.

In preinstalled mode, preinstalled keys are used by nodes
to join an RPL network either as a host, or as a router.
Authenticated mode is only partially defined, for the purpose
of enabling future extensions, as it is not supported by the
symmetric encryption algorithms allowed by the specifica-
tion.

In authenticated mode a node can use preinstalled keys
to join the network as a host, but then it has to request a
second key from a key authority if it wants to become a
router. This key authority can perform authentication of the
node, however the details of how the authority is contacted
and how authentication is performed are not specified.

The Security Section of a secure RPL message supports
different security levels identified by a combination of the
Key Identifier Mode (KIM) and Security Level (LVL) fields.
The KIM identifies what type of key is used for the security
algorithm. Symmetric group or per-pair keys are supported,
as well as asymmetric keys. A packet can have either a
MAC of 32 or 64 bits in length, computed using the AES-
128 [22] block cipher with the CCM [23] mode of operation
or a signature of 256 or 384 bits in length, computed using
the RSA public-key cryptosystem [69] with 2048 or 3072
bit keys, respectively.

The signature calculation uses the RSASSA-PSS instan-
tiation of the RSA algorithm with the SHA-256 secure hash
function [70]. For each type of MAC or signature calculation
encryption is also supported with AES-128 and the CCM
mode of operation. In the cases where signatures are used,
the CCM mode of operation is used in a way that only the
ciphertext is computed without an associated MAC. In this

case data integrity and replay protection are insured by the
packet signature.

The MAC or signature for a message are computed over
the entire packet content, including the IPv6 and ICMPv6
headers, while encryption excludes the headers and the
Security Section of the RPL message. The RPL specifica-
tion also includes the possibility of upgrading or replacing
the encryption/authentication algorithm using the Algorithm
field of the Security Section.

To protect against replay attacks and to provide semantic
security, RPL nodes maintain counters that are used in the
CCM nonce and that are sent in each secured packet. Option-
ally, the counters can represent the value of a timestamp, if
it has a length of at least 6 bytes and a granularity of at least
1024Hz. This optional support for timestamp counters is
intended to provide a simplified protection for delay attacks,
inside LLNs that already provide a global synchronized time
using other means. To mitigate attacks against the anti-replay
protection the RPL specification also includes a Consistency
Check (CC) message that can be sent by RPL nodes to check
or synchronize their counters. The CC messages include a
randomly generated nonce so they too cannot be replayed
by an attacker.

K. IPSec

IPsec is a protocol suite for establishing secure channels
over untrusted networks. The various parts of IPsec are
defined in a large number of RFCs, with the main features of
the suite described in RFC 4301 [71]. IPsec is available in all
IPv6 networks, and is also compatible with IPv4 networks.

IPsec provides integrity, confidentiality and authentication
at the Internet layer of the TCP/IP protocol stack. Compared
to upper layer security protocols (e.g., TLS), IPsec is able
to protect IP and transport layer header fields (e.g., IP
addresses, port numbers).

Algorithms are negotiated during secure channel initial-
ization depending on security and performance policies.
IPsec channel setup typically consists of two phases. The
first phase negotiates the security parameters and performs
peer authentication; this step is handled by the IKEv2
protocol [72]. The first phase ends with a secure channel
between the participating peers. The second phase uses
this secure channel to negotiate the security parameters and
shared secrets for actual data traffic. Once the negotiatiation
ends successfully, data can be exchanged. The parameters
are valid for a certain amount of time, after which a rekeying
exchange runs to establish new secret.

Securing data with IPsec is more expensive than relying
only on link layer security; packet size increases to account
for the additional headers and the cryptographical algorithms
might run on general purpose hardware, thus using a sig-
nificant amount of processing time. However, as opposed
to a strict link layer security implementation, IPsec traffic



can leave the local network and securely pass through the
Internet.

The impact on processing power of running IPsec has
been measured by Granjal et al. [73]. Optimizations on
communication size have also been suggested [64]. Some
mitigation for packet size could include disabling Data
Link security protocols, since IPsec will achieve end-to-end
security at the Internet layer of the protocol stack [64].

Additionally, depending on needs, IPsec can disable some
security requirements; for example, if some application only
needs integrity, IPsec can be configured to no longer encrypt
packets.

IPsec protocols can operate in either transport mode
or tunnel mode. In transport mode the initial IP header
is left intact, with the notable exception of changing the
Protocol field. The IPsec header is sandwiched between
the IP header and payload (with the payload defined as
transport and application layer data). Only some IP headers
fields are protected, depending on whether they need to be
modified during network transit. For example, IP addresses
are protected while the Time To Live (TTL) field is not.

In tunnel mode, the IPsec header encapsulates the entire
IP packet. All IP header fields from the encapsulated packet
are protected. A new IP packet with new IP addresses
then encapsulates the IPsec packet. Outer IP packet layer
fields are also protected, similarly to transport mode. The
encapsulation tunnel mode performs is useful in creating
Virtual Private Networks over untrusted infrastructure.

IPsec uses two network protocols to communicate over
the network: Authentication Header (AH) and Encapsulating
Security Payload (ESP).

Authentication Header only provides authentication, in-
tegrity and replay protection. The lack of encryption de-
creases power consumption. Encapsulating Security Payload
provides authentication, confidentiality, integrity and replay
protection. Confidentiality protection can be disabled, mak-
ing Encapsulating Security Payload perform similarly to
Authentication Header.

IPsec implementations must support HMAC-SHA1-96,
AES-GMAC with AES-128, and AES-XCBC-MAC-96 for
authentication algorithms, AES-CBC and NULL for encryp-
tion algorithms, and AES-GCM for combined encryption
and authentication [74]. IPsec implementations might sup-
port additional algorithms such as TripleDES-CBC, AES-
CTR, etc. Unsafe algorithms must not be supported (e.g.,
DES-CBC).

L. CoAP

Constrained Application Protocol (CoAP) [75] [76] is
an application layer protocol for IoT, created by an IETF
working group called Constrained RESTful Environments
(CoRE) [77] [41]. CoAP is practically a web transfer proto-
col based on REpresentational State Transfer (REST), that is

more lightweight than HTTP and can be used on resource-
constrained devices [8].

CoAP does not provide security in itself, but it uses
Datagram Transport Layer Security (DTLS) [78] at the
transport layer, in order to secure all CoAP messages. DTLS
provides data confidentiality and integrity, authentication,
non-repudiation and anti-replay protection for CoAP com-
munication [79]. It is an adaptation of TLS that works over
UDP (it has additional features that deal with the unreliable
nature of UDP) and offers end-to-end security [80]. CoAP
with DTLS support is also called secure CoAP (CoAPs) [81].

During the provisioning phase, the CoAP device receives
all necessary security information, for example keys and
access control lists [76]. After the provisioning phase the
device will be in one of the four security modes, that are
described further on. In the provisioning phase, the device
identifiers are collected and stored on the data collection
server. The list of identifiers can be used for performing
access control: for example a device receives an access
control list of device identifiers with which it can initiate
DTLS sessions.

CoAP defines four security modes: NoSec, PreSharedKey,
RawPublicKey and Certificates [76] [79] [82]. The specifi-
cation states that at least two modes should be implemented,
NoSec and RawPublicKey.

In the NoSec mode, CoAP messages are not secured using
DTLS (DTLS is disabled). In this mode, packets are sent
directly using UDP over IP.

In the PreSharedKey mode, DTLS is enabled and the
device is pre-programmed with symmetric shared keys. A
device may have a list of shared keys and each key can be
used for the communication with a single node, or a group
of nodes. In this mode, the system opens a DTLS session
in a PSK mode with the destination node. The specification
[76] states that at least TLS PSK WITH AES 128 CCM 8
cipher suite should be supported.

In the RawPublicKey mode, DTLS is enabled and
the device is pre-programmed with an asymmetric key
pair (that can be validated using an out-of-bound mech-
anism). The device has an identity computed from its
public key and a list of node identities that it can
communicate with. The specification [76] states that at
least TLS ECDHE ECDSA WITH AES 128 CCM 8 ci-
pher suite should be implemented for this security mode. The
public keys should be ECDSA-capable, the curve secp256r1
must be supported and the hashing algoritm is SHA-256.

In the Certificates mode, DTLS is enabled and the de-
vice has an asymmetric key pair and an X.509 certifi-
cate that binds it to its subject and is signed by a trust
root. The device must have a list of trust anchors for
validating the certificates. The specification [76] states that
at least TLS ECDHE ECDSA WITH AES 128 CCM 8 ci-
pher suite should be supported for this security mode. The
public key must be ECDSA-capable, the curve secp256r1



must be supported and the hashing algoritm is SHA-256.
The certificate includes a field SubjectPublicKeyInfo that
specifies the public key that should be used in the ECC
calculations. It also includes a signature generated using
ECDSA (secp256r1) and SHA-256. If the device has a
shared key besides the certificate, it must also support
TLS ECDHE PSK WITH AES 128 CBC SHA. It is ex-
pected that other cipher suites will be included in CoAP
in the future versions.

An advantage of CoAP with DTLS support is that it
supports Elliptic Curve cryptography (ECC) for the last two
security modes. Device authentication is performed using
ECDSA (Elliptic Curve Digital Signature Algorithm) and
key agreement is achieved using ECDHE (Elliptic Curve
Diffie-Hellman Algorithm).

CoAP does not include any key distribution and manage-
ment schemes. It is assumed that keys are obtained from the
initial DTLS authentication handshake. Also, DTLS does not
support multiccast communications [79].

Raza et al. proposed Lithe, that uses a compressed version
of DTLS for securing CoAP communication [81]. DTLS
is compressed using 6LoWPAN compression mechanisms.
This optimization has the purpose of improving energy
efficiency on constrained devices and to avoid 6LoWPAN
fragmentation, in order to increase CoAPs usage in con-
strained environments [83].

M. MQTT

Message Queue Telemetry Transport (MQTT) is a mes-
saging protocol that was first presented in 1999 and was
standardized in 2013. MQTT is used in IoT systems in fields
such as health, energy, and social media such as Facebook
[41].

MQTT is used to communicate between small devices
having low capabilities over unreliable, low bandwidth
networks. The protocol connects embedded devices and
applications using a routing mechanism which works one-
to-one, one-to-many and many-to-many [41].

MQTT is based on the publish subscribe model that uses
a broker to route the messages to the clients. The three
actors of the communication process are the publisher, the
subscriber and the broker. In order to send a message, the
publisher publishes the message having a certain topic name.
Then, the broker places the message in the corresponding
queue. Once it is placed there, all the subscribers to that
topic automatically receive the message as a push notifi-
cation. The clients can subscribe to multiple topics and
there is also the possibility to use hierarchical topics (eg.
”sensor/Room2/light”) [84].

Each MQTT message contains a 2-byte header containing
information such as the Message Type (CONNECT, CON-
NACK, PUBLISH, SUBSCRIBE), a DUP flag specifying
whether the message is duplicated or not, and a Quality of
Service level. There is also Retain field which tells the server

to keep the message and retransmit it to new subscribers and
the Remaining Length field storing the length of the rest of
the message [41].

MQTT is built on top of TCP which takes care of ensuring
message delivery and retransmits the packets if that is the
case. On top of this, the messages being trasmitted are
associated a Quality of Service level (QoS). There are
three QoS levels available. For level 0, the sender sends
the message only once without checking if it reached its
destination. Level 0 relies solely on the TCP protocol, thus
there is the possibility of the message not being delivered.
For the next two levels, the protocol ensures the message
reaches the destination. Messages having QoS level one are
retransmitted until all the subscribers confirmed receiving
them. This may result in some of the clients receiving the
same message more than once. On the other hand, level 2
ensures that the same message reaches its subscribers only
once [84].

The MQTT protocol requires each client to establish a
connection with the broker before being able to publish
messages or subscribe to topics. For this, a special message
containing the Client ID is sent. This way, the broker can
keep track of the messages received by each client, thus
making possible the implementation of QoS level 2 [84]
[85].

The choice regarding which QoS level to be used depends
on the one implementing the protocol. The higher the level,
the more bandwidth and energy are required. For instance,
one could use level 0 for sending sensor data such as the
humidity level, however, level 1 or 2 should be used for
sending crucial messages such as alerts.

From the security point of view, the MQTT message can
have a Variable Header, longer that the 2-byte header, which
also contains a username and a password for authentication
support. This way, the broker can deny connections. How-
ever, the values are not encrypted, making the communi-
cation insecure. There is SMQTT, an extension of MQTT
which addresses the security issues, but it is still under
research [85]. MQTT over TLS can be used for ensuring
communication security (port 8883 is standardized for secure
MQTT).

N. XMPP

eXtensible Messaging and Presence Protocol (XMPP, also
known as Jabber) is a popular IETF protocols for instant
messaging [86]. It is built over TCP and uses XML as data
model. Some compatible implementations include Facebook
Messenger, Google Hangouts, Jabber, etc.

The protocol is based on stanza exchanges. A stanza is
a part of an XML document that is sent from one peer
to another or to several others. XMPP relies on a set of
standard stanzas and several extensions. All XMPP servers
are required to know the standard set and may implement



several extensions. The most used ones are File Sending and
Audio and Video Conference [41].

When it comes to security, XMPP implements authenti-
cation, authorization and secure communication.

XMPP provides secure communication using either a
SSL connection or START-TLS. START-TLS initiates a
normal TCP connection and switches to a secure one after a
simple handshake. In this way, systems that have no TLS
capability – such as constrained IoT devices – may still
connect securely. Even if information is sent in plain text,
the authentication method may still use encryption [87].

Authentication is done using a special SASL profile. This
implies verifying a username, a fully qualified domain name,
an identifier and a passphrase. Sending these can be done by
choosing one of the following methods: PLAIN, DIGEST-
MD5 [87].

The XMPP standard specifies that an XMPP server will
have to authenticate users and servers. Contrary to other
protocols, XMPP makes sure that when a server connects it
provides a valid and verified Fully Qualified Domain Name
(FQDN). Moreover, servers connect to each other directly
so that information is sent directly to the recipient. The
protocol specifies the possibility of having a multi-hop path,
still servers on the path need to authenticate to each other.

As XMPP uses XML as its main data format, this gener-
ates significant overhead. This downside is overcome by the
fact that it is one of the most secure protocols available for
IoT device communication. The recommendation is to use a
simple and lightweight protocol like MQTT for the internal
network, where sensors communicate with a gateway, and
XMPP when relaying information over a public network.

O. AMQP

Advanced Message Queuing Protocol (AMQP) is an open
messaging protocol. In 2006, major companies such as
JPMorgan Chase, Cisco Systems and RedHat joined forces
into AMQP working groups, whose aim is to create an open,
asynchronous messaging protocol to work at enterprise scale
[88].

AMQP both offers a network protocol and also comprises
a protocol model [88]. The network protocol specifies the
entities taking part in the communication and the protocol
model specifies how the messages should look like and
which commands to use in order to make the implementation
interoperable with others [89].

AMQP transmits messages by using the publish subscribe
communication model or with point-to-point communica-
tion. The message passing is done via queues and require ex-
changes to route the messages to the corresponding queues.
The routing is done based on rules that the clients subscribe
to. AMQP allows customizations in what messages should
be received, which the senders should be and even how to
adapt the message exchange in order to keep the system
secure and reliable [41].

The protocol is built on top of a TCP connection. In
addition, similarly to MQTT, AMQP also supports primi-
tives assuring at-most-once, at-least-once and exactly-once
message delivery. On top of the transport layer, the protocol
defines another layer called messaging. For this, we have two
types of messages: bare and annotated. The bare messages
are the ones fired by the sender and the annotated are the
ones reaching the destination. The annotated message is built
starting from the bare one to which extra information is
added [41].

The bare message contains the body of the message
together with System Properties, defined by the AMQP pro-
tocol and Application Properties, defined by each application
implementing the protocol. The System Properties comprise
properties such as Message Id, To, Subject, Reply to. Among
the extra information specified by the messaging layer is the
state of the message.

AMQP has TLS over TCP support. Thus, it is difficult to
implement on IoT devices with limited resources. It provides
authentication and secure communications through SASL
and TLS.

IV. DISCUSSION

IoT systems include technologies designed especially for
low-power devices, such as IEEE 802.15.4, LoRaWAN, Z-
Wave, etc. Table II presents a comparative evaluation of
the IoT protocols and networking stacks investigated in this
paper with regard to communication security requirements.

Some of them cover the physical and media access layers
(IEEE 802.15.4, Wi-Fi, NFC and LoRaWAN), others cover
the entire networking stack (BLE, Z-Wave, Thread). ZigBee
is built on top of IEEE 802.15.4, covering network to
application layers. IPSec, 6LoWPAN and RPL are network
layer protocols, while CoAP, while XMPP, AMQP and
MQTT are application layer protocols.

Thread includes a collection of standardized protocols
in its networking stack: IEEE 802.15.4, 6LoWPAN, DVR,
UDP and DTLS [50]. IETF proposes the network stack that
includes: IEEE 802.15.4, 6LoWPAN, RPL, UDP and CoAP
[79].

Some IoT technologies, like 802.15.4 and LoRaWAN,
are more efficient and can be used on resource-constrained
devices. Wi-Fi on the other hand consumes much more
resources and is not adequate for low-power devices.

Some application-layer protocols, such as CoAP and
MQTT, are more appropriate for running on constrained
devices. Others, like XMPP, are recommended for the com-
munication between gateways and servers, over the Internet.

Except for 6LoWPAN and NFC, all presented solutions
provide communication security: data confidentiality, in-
tegrity, origin authentication and freshness. NFC provides
only data integrity and origin authentication. CoAP is inte-
grated with DTLS, MQTT, XMPP and AMQP can be inte-
grated with TLS in order to ensure secure communication.



Protocol/stack Layers Data Confidentiality Data Integrity Data Origin Authentication Data Freshness
IEEE 802.15.4 PHY - MAC • • • •

Wi-Fi PHY - MAC • • • •
NFC PHY - MAC - • • -

LoRaWAN PHY - MAC • • • o
BLE PHY - APP • • • •

Z-Wave PHY - APP • • • •
Thread PHY - APP • • • •
ZigBee NET - APP • • • •
IPSec NET • • • •

6LoWPAN NET - - - -
RPL NET • • • •

CoAP+DTLS TR - APP • • • •
MQTT+TLS TR - APP • • • •
XMPP+TLS TR - APP • • • •
AMQP+TLS TR - APP • • • •

Table II
COMPARATIVE EVALUATION OF IOT PROTOCOLS (•= YES, O = PARTIAL, - = NO)

V. CONCLUSIONS

As the Internet of Things continues to expand, the di-
versity and complexity of IoT applications increases. Such
networks are vulnerable to attacks that aim to steal sensitive
information, take control over devices and disrupt services.

Many protocols and networking stacks for IoT have been
developed. Some of them are standardized, and provide
interoperability between devices and connectivity over the
Internet. They have been specified by standardization bodies
such as IETF and IEEE or by industry alliances, such as
LoRaWAN Alliance and Thread Group.

This paper analyzed the security requirements specific to
IoT systems, by taking into consideration network security,
identity management, privacy, trust, and resilience. Next, the
standardized protocols and networking stacks for IoT, and
the mechanisms they provide for satisfying communication
security requirements are investigated. We presented the
mechanisms that ensure data confidentiality, integrity, origin
authentication and freshness for each IoT technology.

A large selection of IoT technologies was analyzed, from
single-layer protocols (such as 6LoWPAN) to full protocol
stacks (such as Thread). Their functionality and security
capabilities are presented, and table II summarizes the
protocol layers and security requirements that are covered
by the investigated technologies.

As a future work, we would like to investigate standard-
ized solutions for IoT that meet other security requirements,
such as trust and resilience. Another interesting area of
research would be how the security properties of the various
specifications transfer to practical implementations, given
the limitations of IoT devices and the possible variations
inherent in a complete stack.

ACKNOWLEDGMENT

This work has been funded by program Partnerships in
priority areas PN II carried out by MEN-UEFISCDI, project
No. 47/2014, and by the Sectoral Operational Programme

Human Resources Development 2007-2013 of the Ministry
of European Funds through the Financial Agreement POS-
DRU/159/1.5/S/134398.

REFERENCES

[1] M. Farooq, M. Waseem, A. Khairi, and S. Mazhar, “A Critical
Analysis on the Security Concerns of Internet of Things ( IoT
),” International Journal of Computer Applications, vol. 111,
no. 7, pp. 1–6, 2015.

[2] C. Kolias, A. Stavrou, and J. Voas, “Securely making ’things’
right,” Computer, vol. 48, no. 9, pp. 84–88, 2015.

[3] V. Bhuvaneswari and R. Porkodi, “The internet of things
(IOT) applications and communication enabling technology
standards: An overview,” in International Conference on
Intelligent Computing Applications, ICICA 2014, 2014, pp.
324–329.

[4] S. M. Sajjad and M. Yousaf, “Security analysis of
IEEE 802.15.4 MAC in the context of Internet of
Things (IoT),” in 2014 Conference on Information
Assurance and Cyber Security (CIACS), 2014, pp. 9–14.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6861324

[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of Things (IoT): A vision, architectural elements,
and future directions,” Future Generation Computer Systems,
vol. 29, no. 7, pp. 1645–1660, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2013.01.010

[6] K. Ashton, “That ’internet of things’ thing,” 2009. [Online].
Available: http://www.rfidjournal.com/articles/view?4986

[7] “Gartner says 4.9 billion connected ”things” will be in use
in 2015,” 2014. [Online]. Available: http://www.gartner.com/
newsroom/id/2905717

[8] I. Ishaq, D. Carels, G. Teklemariam, J. Hoebeke,
F. Abeele, E. Poorter, I. Moerman, and P. Demeester,
IETF Standardization in the Field of the Internet of Things
(IoT): A Survey, 2013, vol. 2, no. 2. [Online]. Available:
http://www.mdpi.com/2224-2708/2/2/235/htm

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6861324
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6861324
http://dx.doi.org/10.1016/j.future.2013.01.010
http://www.rfidjournal.com/articles/view?4986
http://www.gartner.com/newsroom/id/2905717
http://www.gartner.com/newsroom/id/2905717
http://www.mdpi.com/2224-2708/2/2/235/htm


[9] E. Vasilomanolakis, J. Daubert, and M. Luthra, “On the
Security and Privacy of Internet of Things Architectures
and Systems,” in Secure Internet of Things (SIoT
2015), 2015, pp. 49–57. [Online]. Available: https:
//www.informatik.tu-darmstadt.de/fileadmin/user upload/
Group TK/filesDownload/Published Papers/SIoTpaper.pdf

[10] “50 sensor applications for a smarter world.”
[Online]. Available: http://www.libelium.com/resources/top
50 iot sensor applications ranking/

[11] M. Abomhara and G. M. Koien, “Cyber Security
and the Internet of Things: Vulnerabilities, Threats,
Intruders and Attacks,” Journal of Cyber Security
and Mobility, vol. 4, no. 1, pp. 65–88, 2015.
[Online]. Available: http://www.riverpublishers.com/journal
read html article.php?j=JCSM/4/1/4

[12] “Real-world security and the internet of things,” 2016.
[Online]. Available: https://www.schneier.com/blog/archives/
2016/07/real-world secu.html

[13] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet
of Things ( IoT ) Security : Current Status , Challenges
and Prospective Measures,” in 10th International Conference
for Internet Technology and Secured Transactions (ICITST),
2015, pp. 336–341.

[14] Z. Z.-K., C. M.C.Y., and S. S., “Emerging security
threats and countermeasures in IoT,” in ASIACCS 2015 -
Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, 2015, pp. 1–6.
[Online]. Available: http://www.scopus.com/inward/record.
url?eid=2-s2.0-84942523308{&}partnerID=40{&}md5=
3c4a207d8590001416184468e21e3d27

[15] Y. Wang, G. Attebury, and B. Ramamurthy, “A survey
of security issues in wireless sensor networks,” IEEE
Communications Surveys & Tutorials, vol. 8, no. 2, pp.
2–23, 2006. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4109893

[16] A. Barki, A. Bouabdallah, S. Gharout, and J. Traore,
“M2M Security: Challenges and Solutions,” IEEE
Communications Surveys & Tutorials, no. c, pp. 1–1,
2016. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7373528

[17] L. Miller, IoT Security for Dummies. John Wiley & Sons,
Ltd, 2016.

[18] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini,
“Security, privacy and trust in Internet of Things: The road
ahead,” Computer Networks, vol. 76, pp. 146–164, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2014.
11.008

[19] J. Daubert, A. Wiesmaier, and P. Kikiras, “A view on privacy
& trust in IoT,” in 2015 IEEE International Conference
on Communication Workshop, ICCW 2015, 2015, pp. 2665–
2670.

[20] A. Pfitzmann and M. Hansen, “A terminology
for talking about privacy by data minimization:
Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management,” Tech. Rep.,
2009. [Online]. Available: http://dud.inf.tu-dresden.de/
Anon Terminology.shtml$\delimiter”026E30F$nhttp://dud.
inf.tu-dresden.de/literatur/Anon Terminology v0.34.pdf

[21] Low-Rate Wireless Personal Area Networks (LR-WPANs),
IEEE Std. 802.15.4, 2011. [Online]. Available: http:
//standards.ieee.org/getieee802/download/802.15.4-2011.pdf

[22] Advanced Encryption Sstandard (AES), NIST Std. FIPS-197,
2001. [Online]. Available: http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf

[23] M. Dworkin, Recommendation for Block Cipher Modes
of Operation: The CCM Mode for Authentication and
Confidentiality, NIST Std. Special Publication 800-38C,
2004. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-38c.pdf

[24] “2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver
(CC2420),” Texas Instruments, Dallas, USA. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc2420.pdf

[25] “2.4 GHz IEEE 802.15.4 / ZigBee RF Transceiver
(CC2520),” Texas Instruments, Dallas, USA. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc2530.pdf

[26] “8-bit AVR Microcontroller with Low Power 2.4GHz
Transceiver for ZigBee and IEEE 802.15.4 -
ATmega128RFA1,” Atmel, San Jose, USA. [Online].
Available: http://www.atmel.com/Images/Atmel-8266-MCU
Wireless-ATmega128RFA1 Datasheet.pdf

[27] IEEE, “802.11-1997 standard,” Tech. Rep. [Online].
Available: http://standards.ieee.org/getieee802/download/802.
11n-2009.pdf

[28] ——, “802.11n-2009 standard,” Tech. Rep. [Online].
Available: http://standards.ieee.org/getieee802/download/802.
11ac-2013.pdf

[29] ——, “802.11ac-2013 standard,” Tech. Rep. [Online]. Avail-
able: https://standards.ieee.org/findstds/standard/802.11-1997.
html

[30] E. Tews and M. Beck, “Practical attacks against wep and
wpa,” in Proceedings of the second ACM conference on
Wireless network security. ACM, 2009, pp. 79–86.

[31] ISO, “ISO/IEC 14443,” Tech. Rep. [Online].
Available: http://www.iso.org/iso/home/store/catalogue ics/
catalogue detail ics.htm?csnumber=70171

[32] ——, “ISO/IEC 18092,” Tech. Rep. [Online]. Available: http:
//www.iso.org/iso/catalogue detail.htm?csnumber=56692

[33] Sony, “Felica,” Tech. Rep. [Online].
Available: http://www.sony.net/Products/felica/business/
tech-support/data/M830 NFC FeliCa 1.1e.pdf

[34] ISO, “ISO/IEC 15693,” Tech. Rep. [Online].
Available: http://www.iso.org/iso/iso catalogue/catalogue
ics/catalogue detail ics.htm?csnumber=39694

https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TK/filesDownload/Published_Papers/SIoTpaper.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TK/filesDownload/Published_Papers/SIoTpaper.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TK/filesDownload/Published_Papers/SIoTpaper.pdf
http://www.libelium.com/resources/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/resources/top_50_iot_sensor_applications_ranking/
http://www.riverpublishers.com/journal_read_html_article.php?j=JCSM/4/1/4
http://www.riverpublishers.com/journal_read_html_article.php?j=JCSM/4/1/4
https://www.schneier.com/blog/archives/2016/07/real-world_secu.html
https://www.schneier.com/blog/archives/2016/07/real-world_secu.html
http://www.scopus.com/inward/record.url?eid=2-s2.0-84942523308{&}partnerID=40{&}md5=3c4a207d8590001416184468e21e3d27
http://www.scopus.com/inward/record.url?eid=2-s2.0-84942523308{&}partnerID=40{&}md5=3c4a207d8590001416184468e21e3d27
http://www.scopus.com/inward/record.url?eid=2-s2.0-84942523308{&}partnerID=40{&}md5=3c4a207d8590001416184468e21e3d27
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4109893
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4109893
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7373528
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7373528
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dx.doi.org/10.1016/j.comnet.2014.11.008
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml$\delimiter "026E30F $nhttp://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml$\delimiter "026E30F $nhttp://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml$\delimiter "026E30F $nhttp://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/cc2530.pdf
http://www.atmel.com/Images/Atmel-8266-MCU_Wireless-ATmega128RFA1_Datasheet.pdf
http://www.atmel.com/Images/Atmel-8266-MCU_Wireless-ATmega128RFA1_Datasheet.pdf
http://standards.ieee.org/getieee802/download/802.11n-2009.pdf
http://standards.ieee.org/getieee802/download/802.11n-2009.pdf
http://standards.ieee.org/getieee802/download/802.11ac-2013.pdf
http://standards.ieee.org/getieee802/download/802.11ac-2013.pdf
https://standards.ieee.org/findstds/standard/802.11-1997.html
https://standards.ieee.org/findstds/standard/802.11-1997.html
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=70171
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=70171
http://www.iso.org/iso/catalogue_detail.htm?csnumber=56692
http://www.iso.org/iso/catalogue_detail.htm?csnumber=56692
http://www.sony.net/Products/felica/business/tech-support/data/M830_NFC_FeliCa_1.1e.pdf
http://www.sony.net/Products/felica/business/tech-support/data/M830_NFC_FeliCa_1.1e.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39694
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39694


[35] K. Breitfuß and E. Haselsteiner, “Security in near field
communication,” in Workshop on RFID security, 2006.

[36] “LoRaWAN. What is it? A technical overview of LoRa and
LoRaWAN,” LoRa Alliance, Tech. Rep. November, 2015.

[37] “LPWA Technologies. Unlock New IoT Market Potential.”
LoRa Alliance, Tech. Rep. November, 2015.

[38] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent,
“LoRaWAN Specification,” LoRa Alliance, Inc., Tech.
Rep., 2015. [Online]. Available: https://www.lora-alliance.
org/portals/0/specs/LoRaWANSpecification1R0.pdf

[39] “About z-wave technology.” [Online]. Available: http:
//z-wavealliance.org/about z-wave technology/

[40] “Making Sense of IoT Standards,” Redbend, Tech. Rep.
March, 2015.

[41] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari,
and M. Ayyash, “Internet of Things: A Survey on Enabling
Technologies, Protocols, and Applications,” IEEE Communi-
cations Surveys and Tutorials, vol. 17, no. 4, pp. 2347–2376,
2015.

[42] B. Fouladi and S. Ghanoun, “Security Evaluation of the Z-
Wave Wireless Protocol,” in Black Hat Conference, 2013, p. 6.

[43] G.9959 : Short range narrow-band digital radiocommuni-
cation transceivers - PHY and MAC layer specifications,
ITU-T Std. G.9959 (02/12), 2012. [Online]. Available:
https://www.itu.int/rec/T-REC-G.9959

[44] J. D. Fuller, B. W. Ramsey, J. Pecarina, and M. Rice,
“Wireless intrusion detection of covert channel attacks in
ITU-T G.9959-based networks,” in Proceedings of the 11th
International Conference on Cyber Warfare and Security,
ICCWS 2016, 2016, pp. 137–145.

[45] Specification of the Bluetooth System, Bluetooth
SIG Core Specification, Rev. 4.2, Dec. 2014.
[Online]. Available: https://www.bluetooth.org/DocMan/
handlers/DownloadDoc.ashx?doc id=286439

[46] Recommended Elliptic Curves for Federal Goverment Use,
NIST Std., 1999. [Online]. Available: http://csrc.nist.gov/
groups/ST/toolkit/documents/dss/NISTReCur.pdf

[47] M. Dworkin, Recommendation for Block Cipher Modes
of Operation: The CMAC Mode for Authentication,
NIST Std. Special Publication 800-38B, 2005.
[Online]. Available: http://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38b.pdf

[48] C. Gomez, J. Oller, and J. Paradells, “Overview and eval-
uation of Bluetooth Low Energy: An emerging low-power
wireless technology,” Sensors, vol. 12, no. 9, pp. 11 734–
11 753, 2012.

[49] M. Ryan, “Bluetooth: With low energy comes low
security,” Presented as part of the 7th USENIX
Workshop on Offensive Technologies. USENIX, 2013.
[Online]. Available: https://www.usenix.org/conference/
woot13/workshop-program/presentation/Ryan

[50] “Thread Stack Fundamentals,” Thread Group, Tech. Rep.,
2015.

[51] F. Hao, “J-PAKE: Password Authenticated Key Exchange by
Juggling,” Internet Engineering Task Force, Internet-Draft
draft-hao-jpake-04, Jul. 2016, work in Progress. [Online].
Available: https://tools.ietf.org/html/draft-hao-jpake-04

[52] ——, “Schnorr NIZK Proof: Non-interactive Zero Knowledge
Proof for Discrete Logarithm,” Internet Engineering Task
Force, Internet-Draft draft-hao-schnorr-04, Jul. 2016, work
in Progress. [Online]. Available: https://tools.ietf.org/html/
draft-hao-schnorr-04

[53] “Thread Commissioning,” Thread Group, Tech. Rep., 2015.

[54] ZigBee Specification, ZigBee Alliance Std. Document
053 474r17, 2008.

[55] G. Dini and M. Tiloca, “Considerations on security in zigbee
networks,” in International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC). IEEE, Jun.
2010, pp. 58–65.

[56] K. Masica, “Recommended practices guide for
securing zigbee wireless networks in process control
system environments,” Lawrence Livermore National
Laboratory, Tech. Rep., 2007. [Online]. Available: http:
//cms.doe.gov/sites/prod/files/oeprod/DocumentsandMedia/
Securing ZigBee Wireless Networks.pdf

[57] The Keyed-Hash Message Authentication Code (HMAC),
NIST Std. FIPS-198-1, 2008. [Online]. Available: http://csrc.
nist.gov/publications/fips/fips198-1/FIPS-198-1 final.pdf

[58] G. Montenegro, J. Hui, D. Culler, and N. Kushalnagar,
Transmission of IPv6 Packets over IEEE 802.15.4 Networks,
Internet Engineering Task Force (IETF) Std. RFC 4944, Sep.
2007. [Online]. Available: https://tools.ietf.org/html/rfc4944

[59] Z. Shelby, J. Nieminen, T. Savolainen, M. Isomaki, B. Patil,
and C. Gomez, IPv6 over BLUETOOTH(R) Low Energy,
Internet Engineering Task Force (IETF) Std. RFC 7668, Oct.
2015. [Online]. Available: https://tools.ietf.org/html/rfc7668

[60] A. Brandt and J. Buron, Transmission of IPv6 Packets over
ITU-T G.9959 Networks, Internet Engineering Task Force
(IETF) Std. RFC 7428, Feb. 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7428

[61] J.-S. Youn and Y.-G. Hong, “Transmission of IPv6 packets
over Near Field Communication,” Internet Engineering Task
Force (IETF), Internet-Draft draft-ietf-6lo-nfc-04, Jul. 2016,
Work in Progress. [Online]. Available: https://tools.ietf.org/
html/draft-ietf-6lo-nfc-04

[62] P. B. Mariager, J. T. Petersen, M. van de Logt, D. Barthel,
and Z. Shelby, “Transmission of IPv6 packets over DECT
Ultra Low Energy,” Internet Engineering Task Force (IETF),
Internet-Draft draft-ietf-6lo-dect-ule-05, Mar. 2016, Work
in Progress. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-6lo-dect-ule-05

https://www.lora-alliance.org/portals/0/specs/LoRaWAN Specification 1R0.pdf
https://www.lora-alliance.org/portals/0/specs/LoRaWAN Specification 1R0.pdf
http://z-wavealliance.org/about_z-wave_technology/
http://z-wavealliance.org/about_z-wave_technology/
https://www.itu.int/rec/T-REC-G.9959
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38b.pdf
https://www.usenix.org/conference/woot13/workshop-program/presentation/Ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/Ryan
https://tools.ietf.org/html/draft-hao-jpake-04
https://tools.ietf.org/html/draft-hao-schnorr-04
https://tools.ietf.org/html/draft-hao-schnorr-04
http://cms.doe.gov/sites/prod/files/oeprod/DocumentsandMedia/Securing_ZigBee_Wireless_Networks.pdf
http://cms.doe.gov/sites/prod/files/oeprod/DocumentsandMedia/Securing_ZigBee_Wireless_Networks.pdf
http://cms.doe.gov/sites/prod/files/oeprod/DocumentsandMedia/Securing_ZigBee_Wireless_Networks.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/rfc7428
https://tools.ietf.org/html/draft-ietf-6lo-nfc-04
https://tools.ietf.org/html/draft-ietf-6lo-nfc-04
https://tools.ietf.org/html/draft-ietf-6lo-dect-ule-05
https://tools.ietf.org/html/draft-ietf-6lo-dect-ule-05


[63] K. Lynn, J. Martocci, C. Neilson, and S. Donaldson,
“Transmission of IPv6 over MS/TP networks,” Internet
Engineering Task Force (IETF), Internet-Draft draft-ietf-6lo-
6lobac-05, Jun. 2016, Work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-6lo-6lobac-05

[64] S. Raza, T. Chung, S. Duquennoy, T. Voigt, U. Roedig et al.,
“Securing internet of things with lightweight ipsec,” 2010.

[65] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt,
and U. Roedig, “Securing communication in 6LoWPAN
with compressed IPsec,” in International Conference on
Distributed Computing in Sensor Systems and Workshops
(DCOSS). IEEE, 2011, pp. 1–8.

[66] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt,
“Secure communication for the Internet of Things - A com-
parison of link-layer security and IPsec for 6LoWPAN,”
Security and Communication Networks, vol. 7, no. 12, pp.
2654–2668, 2014.

[67] A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis,
R. Struik, R. Kelsey, T. H. Clausen, and T. Winter, RPL:
IPv6 Routing Protocol for Low-Power and Lossy Networks,
Internet Engineering Task Force (IETF) Std. RFC 6550, Mar.
2012. [Online]. Available: https://tools.ietf.org/html/rfc6550

[68] P. Pongle and G. Chavan, “A survey: Attacks on RPL and
6LoWPAN in IoT,” in International Conference on Pervasive
Computing (ICPC). IEEE, 2015, pp. 1–6.

[69] B. S. Kaliski, Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1, Internet
Engineering Task Force (IETF) Std. RFC 3447, Feb. 2003.
[Online]. Available: https://tools.ietf.org/html/rfc3447

[70] Secure Hash Standard (SHS), NIST Std. FIPS-180-4, Aug.
2015. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.180-4.pdf

[71] S. Kent and K. Seo, “Security architecture for the
internet protocol,” Tech. Rep. [Online]. Available: https:
//tools.ietf.org/html/rfc4301

[72] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, “Internet key
exchange protocol version 2 (ikev2),” Tech. Rep. [Online].
Available: https://tools.ietf.org/html/rfc5996

[73] J. Granjal, R. Silva, E. Monteiro, J. S. Silva, and F. Boavida,
“Why is ipsec a viable option for wireless sensor networks,”
in 2008 5th IEEE International Conference on Mobile Ad Hoc
and Sensor Systems. IEEE, 2008, pp. 802–807.

[74] D. McGrew and P. Hoffman, “Cryptographic Algorithm
Implementation Requirements and Usage Guidance for
Encapsulating Security Payload (ESP) and Authentication
Header (AH),” Tech. Rep. [Online]. Available: https:
//tools.ietf.org/html/rfc7321

[75] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An
application protocol for billions of tiny internet nodes,” IEEE
Internet Computing, vol. 16, no. 2, pp. 62–67, 2012.

[76] C. Bormann, K. Hartke, and Z. Shelby, “The Constrained
Application Protocol (CoAP),” RFC 7252, Oct. 2015.
[Online]. Available: https://rfc-editor.org/rfc/rfc7252.txt

[77] “Constrained restful environments (core).” [Online].
Available: https://datatracker.ietf.org/wg/core/charter/

[78] E. Rescorla and N. Modadugu, “Datagram Transport Layer
Security,” RFC 4347, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc4347.txt

[79] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the
Internet of Things : A Survey of Existing Protocols and Open
Research Issues,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 3, pp. 1294–1312, 2015.

[80] S. Raza, “Lightweight Security Solutions for The Internet of
Things,” Ph.D. dissertation, Swedish Institute of Computer
Science (SICS), 2013.

[81] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt,
“Lithe: Lightweight secure CoAP for the internet of things,”
IEEE Sensors Journal, vol. 13, no. 10, pp. 3711–3720, 2013.

[82] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing
the internet of things: A standardization perspective,” IEEE
Internet of Things Journal, vol. 1, no. 3, pp. 265–275, 2014.

[83] S. Raza, H. Shafagh, and O. Dupont, “Compression
of Record and Handshake Headers for Constrained
Environments,” Internet Engineering Task Force, Internet-
Draft draft-raza-dice-compressed-dtls-00, Sep. 2014, work
in Progress. [Online]. Available: https://tools.ietf.org/html/
draft-raza-dice-compressed-dtls-00

[84] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S
A publish/subscribe protocol for Wireless Sensor Networks,”
3rd International Conference on Communication Systems
Software and Middleware and Workshops, pp. 791–791, 2008.

[85] M. Singh, M. A. Rajan, V. L. Shivraj, and P. Balamuralidhar,
“Secure MQTT for Internet of Things (IoT),” Proceedings -
2015 5th International Conference on Communication Sys-
tems and Network Technologies, CSNT 2015, no. 4, pp. 746–
751, 2015.

[86] P. Saint-Andre, K. Smith, and R. Tronon, XMPP: the defini-
tive guide, 2009.

[87] P. Saint-Andre, “Extensible Messaging and Presence Protocol
(XMPP) : Core,” Internet Engineering Task Force, pp. 1–212,
2011.

[88] S. Vinoski, “Advanced message queuing protocol,” IEEE
Internet Computing, vol. 10, no. 6, pp. 87–89, 2006.

[89] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ul-
lah, “Performance evaluation of RESTful web services and
AMQP protocol,” International Conference on Ubiquitous
and Future Networks, ICUFN, pp. 810–815, 2013.

https://tools.ietf.org/html/draft-ietf-6lo-6lobac-05
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc3447
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc5996
https://tools.ietf.org/html/rfc7321
https://tools.ietf.org/html/rfc7321
https://rfc-editor.org/rfc/rfc7252.txt
https://datatracker.ietf.org/wg/core/charter/
https://rfc-editor.org/rfc/rfc4347.txt
https://tools.ietf.org/html/draft-raza-dice-compressed-dtls-00
https://tools.ietf.org/html/draft-raza-dice-compressed-dtls-00

	Introduction
	Security Requirements
	Network Security
	Identity Management
	Privacy
	Trust
	Resilience


	Communication Protocols and Networking Stacks
	IEEE 802.15.4
	WiFi
	NFC
	LoRaWAN
	Z-Wave
	Bluetooth Low Energy
	Thread
	ZigBee
	6LoWPAN
	RPL
	IPSec
	CoAP
	MQTT
	XMPP
	AMQP

	Discussion
	Conclusions
	References

