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Application of double well potentials in

the collective nuclear motion

R. Budaca∗

Abstract

The recent application of double well potentials in the description
of shape coexistence phenomena and chiral symmetry breaking in nu-
clear physics is discussed with an emphasis on the analytical properties
of the corresponding wave functions. By means of the density of prob-
ability distribution, the effect of the quantum tunneling on the com-
position of the wave functions is dully investigated. The results are
used to identify the distinctive features between the one-dimensional
and central multidimensional problems.
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1 Introduction

The numerical solution of the Schrödinger equation for a double-well po-
tential is thoroughly studied in the one-dimensional case. This is due to
its importance for the understanding of the unconventional nature of the
quantum mechanics. More precisely, its solution is a perfect example of
superposition between two ”classical” states associated to the system being
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in one or the other potential well. The one-dimensional double well poten-
tial, and especially its symmetric variety is a constant presence throughout
all fields of physics, but has a particular importance in the quantum field
theory and molecular physics. In the first case it is closely related to the in-
stanton theory and is used to investigate gauge fields with degenerate vacua
[1]. While in molecular physics it is extensively used to study the vibration
of non-planar molecules [2]. The most used example in this case [3, 4] is
the ammonia molecule where the Nitrogen atom can pass through the plan
of the three Hydrogen atoms with minimal energy expense. The two spa-
tial configurations are then modeled as degenerated minima of a symmetric
one-dimensional potential. In nuclear physics, geometrical three body con-
figurations of two nucleons and a collective core exhibit similar symmetry
properties. In particular, the alignment of the ellipsoidal trajectories of the
valence nucleons to the intrinsic reference frame of the core deformation such
that a three-dimensional geometry is obtained lead to two ”classical” states
where the system is right or left-handed [5]. Such a system is said to have
a chiral symmetry. The superposition of these pure states can be under-
stood through a one-dimensional Hamiltonian with a double well potential
for a suitably chosen chiral variable. Such a Hamiltonian was for the first
time constructed in Ref.[6] as sum of a kinetic operator with a coordinate
dependent mass term and a chiral potential which are both microscopically
determined through distinct ways. A qualitatively similar result can be ob-
tained by treating semiclassically a displaced rotor Hamiltonian which have
the advantage of analytical formulas as well as of the fact that both mass
term and the chiral potential are obtained in a consistent way from a co-
herent theory [7, 8]. Regarding the use of double well potentials in nuclear
collective motion, one could also mention the Interacting Boson Model de-
scription of prolate-oblate shape coexistence [9] and the boson expansion
approach on the wobbling excitations [10, 11].

There is however extremely little investigation into central problems with
double well potentials. The time-independent Schrödinger equation in the
multi-dimensional case becomes a partial differential equation and the na-
ture of the barrier for motion along different degrees of freedom is different.
Moreover, the symmetry properties of the one-dimensional problem are no
longer applicable to the hyper-radial equation. In nuclear physics, double
well radial potentials are often encountered in various types of fission pro-
cesses [12]. With the advent of computational prowess, the microscopically
determined multiple minima potential energy surfaces in shape variables
can be used as numerical potentials for collective excitations within the five-
dimensional space of shape variables defining the dynamical deformation of
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a nucleus [13]. Although such approaches makes the long sought connection
between microscopic and collective degrees of freedom, it lacks in physical
transparency leading thus to misinterpretations of various geometric char-
acteristics of the nuclear shape because the microscopic input is fixed to
reproduce only intrinsic bulk properties. Traditionally, the collective as-
pects of the nuclear shape are described through algebraic and geometric
models which provide an intuitive picture through the analytical and closed
form of the potential energy. Although algebraic model calculations with
multiple minima potentials are analytically complex and still computation-
ally demanding, the interest in them is increasing due to their connection
to the very active topic of nuclear shape coexistence. A recent contribution
in this sense was made in Refs.[14, 15, 16], where a computationally feasible
approach to solve Bohr Hamiltonian problems with double minima collective
potentials was proposed.

In this study, one will present some analytical aspects of the one-dimen-
sional and five-dimensional double well problems used to describe the chiral
geometry found in some odd mass nuclei and respectively the phenomenon
of shape coexistence in eve-even nuclei. Due to relatively uncharted territory
of the central double well potentials, the discussion will be focused on the
comparison between the two pictures.

2 One dimensional double well chiral vibration

The chiral geometry in nuclear systems comes down to a spacial configura-
tion where a triaxial collective core tends to rotate around the axis with the
largest moment of inertia while sets of particles and holes follow ellipsoidal
orbits around mutually perpendicular axes [17]. The system of three mu-
tually perpendicular angular momenta can compose the same total angular
momentum vector by means of a right-handed and respectively left handed
trihedral arrangement. The relevant Hamiltonian associated to two single-
particle spins rigidly aligned along the intrinsic axes 1 and 2 can be written
as [8]

Hchiral = A1Î
2
1 +A2Î

2
2 +A3Î

2
3 − 2A1jÎ1 − 2A2j

′Î2, (1)

where Ak are inertial parameters along the principal axes of the intrinsic
frame of reference while Ik are the operators of the total angular momentum
projections on the same axes.

The quantum Hamiltonian (1) is studied then within a time dependent
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variational principle with the help of the variational state

|ψ(x, ϕ)⟩ =
I∑

K=−I

1

(2I)I

√
(2I)!

(I −K)!(I +K)!

×(I + x)
I−K

2 (I − x)
I+K

2 eiφ(I+K)|IMK⟩, (2)

which is actually a coherent state for the SU(2) algebra of the angular
momentum operators parametrized by the azimuth angle φ defining the
direction of the total angular momentum vector in the plane of the two
single particle spins and the so called chiral variable x which is just the
angular momentum projection on the third intrinsic axis. By solving the
variational principle, one obtains a classical energy function:

H(x, φ) =
I

2
(A1 +A2) +A3I

2 +
(2I − 1)(I2 − x2)

2I
×(A1 cos

2 φ+A2 sin
2 φ−A3)−

2A1j
√
I2 − x2 cosφ− 2A2j

′
√
I2 − x2 sinφ, (3)

and a set of equations of motion for x and φ. The later have a Hamil-
ton canonical form and therefore identify the two parameters as classical
canonical variables, with the chiral variable playing the role of a generalized
momentum. After a certain critical value of the total angular momentum
I and when special conditions defined by the inertial parameters are sat-
isfied, the classical energy function exhibits two minima in respect to the
chiral variable x. The two stationary points correspond to the geometrical
configurations with different handedness or chirality. In order to extract the
quantum energy states corresponding to the two chiral partners, one first
need to quantize the classical energy function. This is done by expanding it
around the corresponding minimum points in φ for fixed values of x:

H̃(x, φ) ≈ H(x, φ0(x)) +
1

2

(
∂2H
∂φ2

)
φ0(x)

[φ− φ0(x)]
2 . (4)

φ0(x) is the value which minimizes the energy function for a fixed x and is
determined by solving the following equation

(2I − 1)
√
I2 − x2(A2 −A1) cosφ0(x) sinφ0(x)

= 2I
[
A2j

′ cosφ0(x)−A1j sinφ0(x)
]
. (5)

It has a simple analytical solution only for the case when A1 = A2. Sub-
stituting now φ − φ0(x) with i d

dx in the properly symmetrized Eq.(4) one
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arrives at a quantum Hamiltonian expressed as the differential operator

Ĥc = −1

2

1√
B(x)

d

dx

1√
B(x)

d

dx
+ V (x), (6)

where

B(x) =

[
∂2H(x, φ)

∂φ2

]−1

φ0(x)

. (7)

plays the role of an one-dimensional mass which depends on x, while the
chiral potential is expressed as:

V (x) = H(x, φ0(x)) +
B′′(x)

8 [B(x)]2
− 9 [B′(x)]2

32 [B(x)]3
. (8)

For the generality of the formalism, one presents here the full analytical
expression for the mass term

[B(x)]−1 =

√
I2 − x2

I

[
(2I − 1)

√
(I2 − x2)(A2 −A1) cos (2φ0(x))

+2A1jI cos (φ0(x)) + 2A2j
′I sin (φ0(x))

]
, (9)

which is then used to define the chiral potential. In the special case when
A1 = A2 = A, the azimuth angle which minimizes the classical energy, be-
comes independent of x and has the constant value of π/4. These conditions
lead to a very simple expression for the mass term:

B(x) =
1√

2A
√
I2 − x2(j + j′)

. (10)

With this, the potential can be easily written explicitly as a function of
the chiral variable. Here one will give the expression for the case when
j = j′ = 11/2 which is more studied from the experimental point of view:

V (x) = −11
√
2
[
32I4 − 4I2

(
16x2 + 1

)
+ 32x4 + x2

]
32 [(I − x)(I + x)]3/2

+
3(1− 2I)x2

16I
+

2I(8I + 5)

16
. (11)

It can be easily checked that both mass function and the potential are in-
variant under the parity transformation x→ −x. Therefore the potential is
symmetrical and has two degenerated minima. Additionally, the exact eigen-
functions satisfy the Dirichlet boundary condition at x = I and x = −I.
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The formalism is easily transposable to other single-particle spin combina-
tions of j and j′. By numerical calculations one ascertained that for smaller
and equal single-particle spins j = j′ = 9/2, the potential is higher in en-
ergy with sharper minima delimited by a higher barrier at x = 0. The same
behaviour is found when only the total angular momentum value is raised.
The separating barrier is actually a parabola. This can also be seen from the
analytical expression (11), where the quadratic term is dominant for small
x.

Due to the symmetry of the problem, the solutions can be separated
by the parity. As the corresponding eigenvalue problem cannot be solved
exactly, this property comes in handy when considering a diagonalization
procedure. Indeed, one can use different basis states with certain parity
properties in order to reduce the diagonalization dimension by half. One of
the most often employed diagonalization basis states for such symmetrical
problems are the particle in the box eigenstates or simply the trigonometric
basis [18, 19]. Assigning now for each parity the basis states:

g1n(x) =
1√
I
cos

[
(2n− 1)πx

2I

]
, n = 1, 2, ..., (12)

g−1
n (x) =

1√
I
sin

[
2nπx

2I

]
, n = 1, 2, ... (13)

where 1 denotes even parity, while -1 the odd parity states, the eigenvalues
and the eigenfunctions are then easily obtained through a diagonalization
procedure using a basis dimension which achieves a desirable convergence
of the diagonalization results. For the purpose of the numerical applica-
tions made on the chiral bands of 134Pr nucleus, the truncation of the basis
was set to 50. The states of the two chiral bands are defined as the first
two eigenvalues of the chiral potential for a given total angular momentum
value. The first chiral state is found to be symmetrical, while the second
one which has a higher energy is antisymmetrical. The splitting between
the two chiral eigenvalues depends on the amount of tunneling allowed by
the barrier between the two symmetrical potential wells. As the barrier in-
creases by considering higher angular momentum values, the two potential
wells are no longer interacting, and the spectra associated to the two min-
ima become degenerated. This is when the parity becomes a good quantum
number, and the total wave functions can be expressed as symmetrical and
antisymmetrical combinations of definite parity states.
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3 Sextic potential with double minima for the five-
dimensional Bohr Hamiltonian

The nuclear collective motion associated to quadrupole degrees of freedom
is traditionally studied by means of the Bohr Hamiltonian [20]:

H = − h̄2

2B

[
1

β4
∂

∂β
β4

∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
)
+ V (β, γ). (14)

B is the mass parameter which in general collective model is actually in-
cluded in a mass bi-tensor in five dimensional space of the shape and angle
variables. Qk(k = 1, 2, 3) designate the three projections of the angular mo-
mentum on the principal axes of the intrinsic frame of reference defined by
the principal axes of the spheroid representing the deformed nuclear shape.
β shape variable represents the deviation from the spherical nuclear shape,
while the γ variable is associated to the deviations from axiallity in the pres-
ence of a non-vanishing β deformation. Finally, the Euler angles expressing
the angular momentum operators are associated to the rotational motion
of the nucleus. There are experimental evidences of a possible adiabatic
separation of β shape fluctuations and coupled γ-angular excitations. This
situation can be modeled by assuming a separable potential of the form
V (β, γ) = [v(β) + u(γ)]h̄2/2B, as in case of the well known X(5) model
[21]. With a total wave function factorized as Ψ(β, γ,Ω) = f(β)F (Ω, γ)
one separates the Eq.(14) in two second order differential equations: one
corresponding to the β shape variable, and another one to the γ-angular
degrees of freedom. In the case of mostly prolate nuclear shapes, when the
γ potential is very sharp and centered around γ = 0, the rotational term
from (14) can be approximated as

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
) ≈ 4

3
Q2 +Q2

3

(
1

sin2 γ
− 4

3

)
. (15)

Q is the total angular momentum vector operator whose eigenfunctions,
which are common also to the operator of the third component of angular
momentum, are the Wigner rotational matrices DL

MK of total angular mo-
mentum L and its projections M and K on the body-fixed third axis and
laboratory-fixed z axis, respectively. This approximation allows a second
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separation of variables, more precisely of γ shape variable from the rota-
tional degrees of freedom. Now, averaging the separated β equation on the
rotational matrices, one obtains the following differential equation:[

− 1

β4
∂

∂β
β4

∂

∂β
+
L(L+ 1)

3β2
+ v(β)

]
Ψ(β) = ϵβΨ(β), (16)

which describes the rotation-vibration states with the projection quantum
number K = 0 and positive parity, restricting thus the spectrum only to
even angular momentum states. The energy of the above equation is scaled
as in the case of the potential, that is ϵβ = 2BE/h̄2.

Due to the separation of the β degree of freedom, and the symmetry
restrictions on the collective potential, the associated β potential must be
a polynomial in β2. The simplest potential which can achieve simultaneous
spherical and deformed minima needed for the description of shape coexis-
tence is the sextic potential:

v(β) = aβ2 + bβ4 + cβ6. (17)

It can be easily checked that Eq.(16) for the above potential have a scaling
property which lead to the equivalence:

ϵβ(a, b, c) = a1/2ϵβ(1, ba−3/2, ca−2). (18)

Thus, solving only the eigenvalue equation for potentials:

v(β) = β2 + µβ4 + νβ6, (19)

is enough to determine the unique energy spectra up to a scale factor. This
potential has two minima at

βmin =

 0,√√
µ2−3ν−µ

3ν ,
(20)

only if µ < 0 and ν > 0. Imposing additional restrictions on the poten-
tial consistent with the desired phenomenological needs, the potential and
consequently the entire model will reduce to a single free parameter. For
example in Refs.[22, 23, 24], the sextic potential was restricted to its quasi-
exactly solvable instance, while in Refs.[14, 15] it was restricted to have two
degenerated minima. In the later case, there was expected to find a splitting
of the density probability for the ground state which would have been a clear
indication of shape coexistence. The results, however revealed only hints of
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fragmentation in the density probability of the ground state. The clearer
indications of some kind of shape coexistence were observed in the β excited
state. The reason for this hindering of the shape coexistence signatures
resides in the fact that there is an additional centrifugal contribution com-
ing from the multidimensional kinetic term of the Bohr Hamiltonian which
raises the spherical minimum such that its effect is substantially subsided.
This can be seen by changing the function as ψ(β) = Ψ(β)/β2. With this
change of function one can express the differential equation (16) in a one
dimensional Schrödinger form[

− ∂2

∂β2
+ veff (β)

]
ψ(β) = ϵβψ(β), (21)

for an effective potential

vLeff (β) =
L(L+ 1) + 2

β2
+ β2 + µβ4 + νβ6. (22)

As can be seen even for the L = 0 states, the aforemention contribution
is non-vanishing and has the effect of raising and displacing the spherical
minimum of the original potential v(β). Therefore, although the original
potential exhibit two minima, for certain values of parameters µ and ν the
spherical minimum of the ground state effective potential can completely
vanish. This problem was discussed in Ref.[16], where instead of employing
two degenerated minima for the original potential v(β), the same property
is used on the effective potential in the ground state band. Although such
a condition also renders the model to a single free parameter, the mini-
mum condition for v0eff (β) is a quartic equation in β2 and therefore there
is no analytical relationship between parameters µ and ν which realize the
mentioned conditions. Nevertheless, numerical calculations are possible and
were carried out for few representative cases in order to ascertain the effect
of the height and width of the barrier on the energy spectrum and on the
probability distribution of the low lying states [16].

Solving the Schrödinger equation for multiple wells is not a trivial task,
and is more complex for the multidimensional case with central symmetry. A
highly effective procedure for solving such problems can be found in Refs.[25,
26, 27]. By adapting this prescription to the present case and particular
numerical applications, the energies and the wave functions of (21) with
effective ground state potentials having degenerated minima are determined
through a diagonalization procedure using the basis states

Ψ̃νn(β) =

√
2β−

3
2Jν(αnβ/βW )

βWJν+1(αn)
. (23)
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Here Jν are Bessel functions of the first kind with

ν =

√
9

4
+
L(L+ 1)

3
, (24)

while αn = βWλ are their associated zeros indexed by the order n = 1, 2, 3...
and defined by the boundary conditions for a suitably chosen limiting value
βW which encompass the relevant part of the potential v(β) [27]. The bound-
ary value βW is determined such that by increasing it, all considered energy
states for a given dimension of the diagonalization basis would change no
more than a preset precision [14]. Within the set of orthogonal functions
(23), the Hamiltonian matrix to be diagonalized is

Hnm =

(
αn

yW

)2

δnm +
2
∑3

i=1 vi (yW )2i I
(ν,i)
nm

q2Jν+1(αn)Jν+1(αm)
, (25)

where v1 == 1, v2 = µ and v3 = ν. The integrals

I(ν,i)nm =

∫ 1

0
x2i+1Jν(αnx)Jν(αmx)dx, x = β/βW . (26)

are numerically calculated using some recurrence relations [26, 27] which
considerably optimize the procedure. The set of final eigenvalues for cer-
tain values of µ and ν which assure degenerate minima for the ground state
effective potential and implicitly a fixed angular momentum L belong to dif-
ferent β vibrational bands. The ground band states are obviously identified
with the lowest eigenvalues and so on. The eigenvector components found
through the diagonalization procedure represent the coefficients of the basis
expansion

ΨLk(β) =
nmax∑
n

Ak
nΨ̃νn(β), (27)

where k denotes the order of the solution and nmax is the truncated dimen-
sion of the diagonalization basis. This output is needed for the calculus
of the electromagnetic transitions and other relevant observables such as
averages and moments.

For the numerical calculation made so far in Refs.[14, 15, 16], one con-
sidered a basis with nmax = 20 states and an end precision for the diagonal-
ization convergence as the boundary βW is varied set to 10−7 units of the
absolute energy.

The restriction to have degenerate minima in the ground state effective
potential makes the barrier to increase in height and in thickness as the
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relationship between µ and ν is changed. The numerical results in this case
supports the conclusions made regarding the high barrier case, that is the
complete separation of the ground band and excited band states, whose as-
sociated probability distribution have both single peak profiles localized in
the deformed and respectively near-spherical potential wells. Decreasing the
height and the thickness of the barrier, tunneling between the two deforma-
tion configurations become possible. Thus, the probability distribution of
the ground state starts to spill into the first less deformed potential well,
exhibiting at some point a double peak structure. The same happens with
the probability distribution of the first β excited state, which through the
same process recovers its usual role of an one phonon vibrational mode,
with the two peaks representing the turning points of the classical vibration
around the ground state average deformation. The vibrational nature of the
first β excited state is also supported by the presence of a node in its wave
function.

4 Discussion and concluding remarks
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