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paritate. Aceastǎ simetrie adiţionalǎ ı̂ntroduce un nou numǎr cuantic corespunzǎtor

paritǎţii funcţiei de undǎ, astfel ı̂ncât numǎrul stǎrilor distincte este dublat. Aceastǎ mul-

tiplicare a stǎrilor proprii se ı̂ntâmplǎ deasemenea şi ı̂n cazul potenţialelor cu douǎ gropi

asimetrice. Aceastǎ caracteristicǎ poate fi observatǎ mai bine atunci când bariera ce separǎ

minimile simetrice corespunzǎtoare variabilei pozitive şi respectiv negative este crescutǎ

suficient de mult ca sǎ blocheze complet tunelarea dintre ele. Energia totalǎ asociatǎ aces-

tui caz la limitǎ poate fi consideratǎ ca fiind corespunzǎtoare unei probleme simple pentru

o singurǎ groapǎ dar cu degenerare dublǎ a spectrului. Mai mult de atât, funcţia de undǎ

totalǎ corespunzǎtoare la cele douǎ nivele degenerate poate fi exprimatǎ ca o combinaţie

liniarǎ simetricǎ şi respectiv asimetricǎ a funcţiilor de undǎ pentru vibraţia separatǎ ı̂n

fiecare dintre cele douǎ gropi de potenţial.

În probleme radiale pentru potenţiale cu douǎ gropi nu existǎ ı̂nsǎ nici o simetrie ı̂n

plus. Chiar dacǎ se poate construi oricând un potenţial radial cu douǎ gropi simetrice faţǎ

de bariera separatoare, funcţiile de undǎ asociate nu vor avea aceastǎ simetrie. Astfel,

spectrul total ı̂n astfel de cazuri nu mai este dublat. Deasemenea, cum nu mai este nici o

simetrie asociatǎ, stǎrile corespunzǎtoare nu mai pot fi interpretate ca superpoziţii a douǎ

stǎri ”clasice” de nedeosebit localizate ı̂n fiecare din cele douǎ gropi ale potenţialului.



Când bariera unui potenţial radial cu douǎ gropi este foarte ı̂naltǎ şi cele douǎ gropi sunt

separate suficient de mult pentru a nu interacţiona prin tunelare, se constatǎ cǎ starea

fundamentalǎ este deja localizatǎ ı̂n una dintre gropi. Mai concret, starea fundamentalǎ

preferǎ ı̂n acest caz groapa mai depǎrtatǎ. Un alt aspect interesant se referǎ la faptul

cǎ ı̂n aceleaşi condiţii ale unei bariere separatoare foarte ı̂nalte, prima stare excitatǎ ı̂şi

pierde complet caracterul vibraţional, adicǎ funcţia sa de undǎ nu mai posedǎ un nod.

Deasemenea starea excitatǎ devine şi ea localizatǎ, doar cǎ ı̂n groapa cea mai apropiatǎ

de origine.

În concluzie, pentru bariere separatoare foarte ı̂nalte, starea fundamentalǎ ı̂n cazul

unidimensional al potenţialului cu douǎ gropi simetrice este dublu degeneratǎ şi are

aceiaşi distribuţie de probabilitate de localizare ı̂n ambele gropi. Unica distincţie dintre

cele douǎ stǎri este datǎ de paritatea acestora la schimbarea semnului variabilei. Contrar

acestei comportǎri, starea fundamentalǎ şi prima stare excitatǎ au energii diferite ı̂n cazul

problemei radiale pentru un potenţial cu douǎ minime. Fiecare din aceste stǎri sunt şi

localizate doar ı̂n unul din cele douǎ gropi de potenţial.

Când bariera separatoare este micşoratǎ astfel ı̂ncât sǎ permitǎ tunelarea cuanticǎ

prin ea dintre cele douǎ gropi de potenţial, degenerarea stǎrilor din cazul unidimen-

sional simetric este ridicatǎ. Cele douǎ stǎri ı̂şi pǎstreazǎ ı̂ncǎ proprietǎţile de paritate

şi distribuţia de probabilitate de localizare ı̂n ambele gropi, totuşi ne mai fiind egal dis-

tribuitǎ ı̂ntre cele douǎ gropi. Pe mǎsurǎ ce bariera scade şi mai mult, spectrul energetic

total devine regular şi similar celui associat unei singure gropi de potenţial. Permiţând

acum tunelarea ı̂n cazul problemei radiale cu douǎ gropi, conduce la redistribuirea prob-

abilitǎţii de localizare a fiecǎrei stǎri ı̂n ambele gropi de potenţial. Startul acestui fenomen

marcheazǎ şi apariţia nodului ı̂n prima stare excitatǎ, ceea ce ı̂i conferǎ un caracter vibraţional.

Pentru anumite forme ale potenţialului cu douǎ gropi, distribuţia de probabilitate de lo-

calizare pentru starea fundamentalǎ poate sǎ prezinte chiar şi o structurǎ cu douǎ vârfuri.

Aceastǎ situaţie nu este condiţionatǎ de degenerarea minimelor celor douǎ gropi de potenţial.

În final, studiul sistemelor fizice cu ajutorul potenţialelor cu douǎ gropi dezvǎlue as-

pecte analitice noi. Mai mult de atât, datoritǎ faptului cǎ fiecare problemǎ tratatǎ ı̂n acest

studiu se referǎ la fenomene fizice reale, efectele de mecanicǎ cuanticǎ reeşite capǎtǎ şi o

interpretare fizicǎ.
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Applications of double well potentials in

the collective nuclear motion

R. Budaca∗

Abstract

The recent applications of double well potentials in the descrip-
tion of shape coexistence phenomena and chiral symmetry breaking in
nuclear physics is discussed with an emphasis on the analytical prop-
erties of the corresponding wave functions. By means of the density
of probability distribution, the effect of the quantum tunneling on the
composition of the wave functions is dully investigated. The results are
used to identify the distinctive features between the one-dimensional
and central multidimensional problems.
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1 Introduction

The numerical solution of the Schrödinger equation for a double-well po-
tential is thoroughly studied in the one-dimensional case. This is due to
its importance for the understanding of the unconventional nature of the
quantum mechanics. More precisely, its solution is a perfect example of su-
perposition between two ”classical ” states associated to the system being
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in one or the other potential well. The one-dimensional double well poten-
tial, and especially its symmetric variety is a constant presence throughout
all fields of physics, but has a particular importance in the quantum field
theory and molecular physics. In the first case, it is closely related to the in-
stanton theory and is used to investigate gauge fields with degenerate vacua
[1]. While in molecular physics it is extensively used to study the vibration
of non-planar molecules [2]. The most used example in this case [3, 4] is
the ammonia molecule where the Nitrogen atom can pass through the plan
of the three Hydrogen atoms with minimal energy expense. The two spa-
tial configurations are then modeled as degenerated minima of a symmetric
one-dimensional potential. In nuclear physics, geometrical three body con-
figurations of two nucleons and a collective core exhibit similar symmetry
properties. In particular, the alignment of the ellipsoidal trajectories of the
valence nucleons to the intrinsic reference frame of the core deformation such
that a three-dimensional geometry is obtained lead to two ”classical ” states
where the system is right or left-handed [5]. Such a system is said to have
a chiral symmetry. The superposition of these pure states can be under-
stood through a one-dimensional Hamiltonian with a double well potential
for a suitably chosen chiral variable. Such a Hamiltonian was for the first
time constructed in Ref.[6] as a sum of a kinetic operator with a coordinate
dependent mass term and a chiral potential which are both microscopically
determined through distinct ways. A qualitatively similar result can be ob-
tained by treating semiclassically a displaced rotor Hamiltonian which have
the advantage of analytical formulas as well as of the fact that both mass
term and the chiral potential are obtained in a consistent way from a co-
herent theory [7, 8]. Regarding the use of double well potentials in nuclear
collective motion, one could also mention the Interacting Boson Model de-
scription of prolate-oblate shape coexistence [9] and the boson expansion
approach on the wobbling excitations [10, 11].

There is however extremely little investigation into central problems with
double well potentials. The time-independent Schrödinger equation in the
multi-dimensional case becomes a partial differential equation and the na-
ture of the barrier for motion along different degrees of freedom is different.
Moreover, the symmetry properties of the one-dimensional problem are no
longer applicable to the hyper-radial equation. In nuclear physics, double
well radial potentials are often encountered in various types of fission pro-
cesses [12]. With the advent of computational prowess, the microscopically
determined multiple minima potential energy surfaces in shape variables
can be used as numerical potentials for collective excitations within the five-
dimensional space of shape variables defining the dynamical deformation of
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a nucleus [13]. Although such approaches make the long sought connection
between microscopic and collective degrees of freedom, it lacks in physical
transparency leading thus to misinterpretations of various geometric char-
acteristics of the nuclear shape because the microscopic input is fixed to
reproduce only intrinsic bulk properties. Traditionally, the collective as-
pects of the nuclear shape are described through algebraic and geometric
models which provide an intuitive picture through the analytical and closed
form of the potential energy. Despite the fact that algebraic model calcu-
lations with multiple minima potentials are analytically complex and still
computationally demanding, the interest in them is increasing due to their
connection to the very active topic of nuclear shape coexistence. A recent
contribution in this sense was made in Refs.[14, 15, 16], where a computa-
tionally feasible approach to solve Bohr Hamiltonian problems with double
minima collective potentials was proposed.

In this study, one will present some analytical aspects of the one-dimen-
sional and five-dimensional double well problems used to describe the chiral
geometry found in some odd mass nuclei and respectively the phenomenon of
shape coexistence in even-even nuclei. Due to relatively uncharted territory
of the central double well potentials, the discussion will be focused on the
comparison between the two pictures.

2 One-dimensional double well chiral vibration

The chiral geometry in nuclear systems comes down to a spacial configura-
tion where a triaxial collective core tends to rotate around the axis with the
largest moment of inertia while sets of particles and holes follow ellipsoidal
orbits around mutually perpendicular axes [17]. The system of three mu-
tually perpendicular angular momenta can compose the same total angular
momentum vector by means of a right-handed and respectively a left-handed
trihedral arrangement. The relevant Hamiltonian associated to two single-
particle spins rigidly aligned along the intrinsic axes 1 and 2 can be written
as [8]

Hchiral = A1Î
2
1 +A2Î

2
2 +A3Î

2
3 − 2A1jÎ1 − 2A2j

′Î2, (1)

where Ak are inertial parameters along the principal axes of the intrinsic
frame of reference while Ik are the operators of the total angular momentum
projections on the same axes.

The quantum Hamiltonian (1) is studied then within a time dependent
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variational principle with the help of the variational state

|ψ(x, ϕ)⟩ =
I∑

K=−I

1

(2I)I

√
(2I)!

(I −K)!(I +K)!

×(I + x)
I−K

2 (I − x)
I+K

2 eiφ(I+K)|IMK⟩, (2)

which is actually a coherent state for the SU(2) algebra of the angular
momentum operators parametrized by the azimuth angle φ defining the
direction of the total angular momentum vector in the plane of the two
single particle spins and the so called chiral variable x which is just the
angular momentum projection on the third intrinsic axis. By solving the
variational principle, one obtains a classical energy function:

H(x, φ) =
I

2
(A1 +A2) +A3I

2 +
(2I − 1)(I2 − x2)

2I
×(A1 cos

2 φ+A2 sin
2 φ−A3)−

2A1j
√
I2 − x2 cosφ− 2A2j

′
√
I2 − x2 sinφ, (3)

and a set of equations of motion for x and φ. The later have a Hamil-
ton canonical form and therefore identify the two parameters as classical
canonical variables, with the chiral variable playing the role of a generalized
momentum. After a certain critical value of the total angular momentum
I and when special conditions defined by the inertial parameters are sat-
isfied, the classical energy function exhibits two minima in respect to the
chiral variable x. The two stationary points correspond to the geometrical
configurations with different handedness or chirality. In order to extract the
quantum energy states corresponding to the two chiral partners, one first
need to quantize the classical energy function. This is done by expanding it
around the corresponding minimum points in φ for fixed values of x:

H̃(x, φ) ≈ H(x, φ0(x)) +
1

2

(
∂2H
∂φ2

)
φ0(x)

[φ− φ0(x)]
2 . (4)

φ0(x) is the value which minimizes the energy function for a fixed x and is
determined by solving the following equation

(2I − 1)
√
I2 − x2(A2 −A1) cosφ0(x) sinφ0(x)

= 2I
[
A2j

′ cosφ0(x)−A1j sinφ0(x)
]
. (5)

It has a simple analytical solution only for the case when A1 = A2. Sub-
stituting now φ − φ0(x) with i d

dx in the properly symmetrized Eq.(4) one
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arrives at a quantum Hamiltonian expressed as the differential operator

Ĥc = −1

2

1√
B(x)

d

dx

1√
B(x)

d

dx
+ V (x), (6)

where

B(x) =

[
∂2H(x, φ)

∂φ2

]−1

φ0(x)

. (7)

plays the role of an one-dimensional mass which depends on x, while the
chiral potential is expressed as:

V (x) = H(x, φ0(x)) +
B′′(x)

8 [B(x)]2
− 9 [B′(x)]2

32 [B(x)]3
. (8)

For the generality of the formalism, one presents here the full analytical
expression for the mass term

[B(x)]−1 =

√
I2 − x2

I

[
(2I − 1)

√
(I2 − x2)(A2 −A1) cos (2φ0(x))

+2A1jI cos (φ0(x)) + 2A2j
′I sin (φ0(x))

]
, (9)

which is then used to define the chiral potential. In the special case when
A1 = A2 = A, the azimuth angle which minimizes the classical energy, be-
comes independent of x and has the constant value of π/4. These conditions
lead to a very simple expression for the mass term:

B(x) =
1√

2A
√
I2 − x2(j + j′)

. (10)

With this, the potential can be easily written explicitly as a function of
the chiral variable. Here one will give the expression for the case when
j = j′ = 11/2 which is more studied from the experimental point of view:

V (x) = −11
√
2
[
32I4 − 4I2

(
16x2 + 1

)
+ 32x4 + x2

]
32 [(I − x)(I + x)]3/2

+
3(1− 2I)x2

16I
+

2I(8I + 5)

16
. (11)

It can be easily checked that both mass function and the potential are in-
variant under the parity transformation x→ −x. Therefore the potential is
symmetrical and has two degenerated minima. Additionally, the exact eigen-
functions satisfy the Dirichlet boundary condition at x = I and x = −I.
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The formalism is easily transposable to other single-particle spin combina-
tions of j and j′. By numerical calculations one ascertained that for smaller
and equal single-particle spins j = j′ = 9/2, the potential is higher in en-
ergy with sharper minima delimited by a higher barrier at x = 0. The same
behaviour is found when only the total angular momentum value is raised.
The separating barrier is actually a parabola. This can also be seen from the
analytical expression (11), where the quadratic term is dominant for small
x.

Due to the symmetry of the problem, the solutions can be separated
by the parity. As the corresponding eigenvalue problem cannot be solved
exactly, this property comes in handy when considering a diagonalization
procedure. Indeed, one can use different basis states with certain parity
properties in order to reduce the diagonalization dimension by half. One of
the most often employed diagonalization basis states for such symmetrical
problems are the particle in the box eigenstates or simply the trigonometric
basis [18, 19]. Assigning now for each parity the basis states:

g1n(x) =
1√
I
cos

[
(2n− 1)πx

2I

]
, n = 1, 2, ..., (12)

g−1
n (x) =

1√
I
sin

[
2nπx

2I

]
, n = 1, 2, ... (13)

where 1 denotes even parity, while -1 the odd parity states, the eigenvalues
and the eigenfunctions are then easily obtained through a diagonalization
procedure using a basis dimension which achieves a desirable convergence of
the diagonalization results. For the purpose of the numerical applications
made on the chiral bands of 134Pr nucleus, the truncation of the basis was
set to 50. The states of the two chiral bands are defined as the first two
eigenvalues of the chiral potential for a given total angular momentum value.
The first chiral state is found to be symmetrical, while the second one which
has a higher energy is antisymmetrical. The splitting between the two chi-
ral eigenvalues depends on the amount of tunneling allowed by the barrier
between the two symmetrical potential wells. As the barrier increases by
considering higher angular momentum values, the two potential wells are
no longer interacting, and the spectra associated to the two minima become
degenerated.
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3 Sextic potential with double minima for the five-
dimensional Bohr Hamiltonian

The nuclear collective motion associated to quadrupole degrees of freedom
is traditionally studied by means of the Bohr Hamiltonian [20]:

H = − h̄2

2B

[
1

β4
∂

∂β
β4

∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
)
+ V (β, γ). (14)

B is the mass parameter which in general collective model is actually in-
cluded in a mass bi-tensor in five dimensional space of the shape and angle
variables. Qk(k = 1, 2, 3) designate the three projections of the angular mo-
mentum on the principal axes of the intrinsic frame of reference defined by
the principal axes of the spheroid representing the deformed nuclear shape.
β shape variable represents the deviation from the spherical nuclear shape,
while the γ variable is associated to the deviations from axiallity in the pres-
ence of a non-vanishing β deformation. Finally, the Euler angles expressing
the angular momentum operators are associated to the rotational motion
of the nucleus. There are experimental evidences of a possible adiabatic
separation of β shape fluctuations and coupled γ-angular excitations. This
situation can be modeled by assuming a separable potential of the form
V (β, γ) = [v(β) + u(γ)]h̄2/2B, as in case of the well known X(5) model
[21]. With a total wave function factorized as Ψ(β, γ,Ω) = f(β)F (Ω, γ)
one separates the Eq.(14) in two second order differential equations: one
corresponding to the β shape variable, and another one to the γ-angular
degrees of freedom. In the case of mostly prolate nuclear shapes, when the
γ potential is very sharp and centered around γ = 0, the rotational term
from (14) can be approximated as

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
) ≈ 4

3
Q2 +Q2

3

(
1

sin2 γ
− 4

3

)
. (15)

Q is the total angular momentum vector operator whose eigenfunctions,
which are common also to the operator of the third component of angular
momentum, are the Wigner rotational matrices DL

MK of total angular mo-
mentum L and its projections M and K on the body-fixed third axis and
laboratory-fixed z axis, respectively. This approximation allows a second
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separation of variables, more precisely of γ shape variable from the rota-
tional degrees of freedom. Now, averaging the separated β equation on the
rotational matrices, one obtains the following differential equation:[

− 1

β4
∂

∂β
β4

∂

∂β
+
L(L+ 1)

3β2
+ v(β)

]
Ψ(β) = ϵβΨ(β), (16)

which describes the rotation-vibration states with the projection quantum
number K = 0 and positive parity, restricting thus the spectrum only to
even angular momentum states. The energy of the above equation is scaled
as in the case of the potential, that is ϵβ = 2BE/h̄2.

Due to the separation of the β degree of freedom, and the symmetry
restrictions on the collective potential, the associated β potential must be
a polynomial in β2. The simplest potential which can achieve simultaneous
spherical and deformed minima needed for the description of shape coexis-
tence is the sextic potential:

v(β) = aβ2 + bβ4 + cβ6. (17)

It can be easily checked that Eq.(16) for the above potential have a scaling
property which lead to the equivalence:

ϵβ(a, b, c) = a1/2ϵβ(1, ba−3/2, ca−2). (18)

Thus, solving only the eigenvalue equation for potentials:

v(β) = β2 + µβ4 + νβ6, (19)

is enough to determine the unique energy spectra up to a scale factor. This
potential has two minima at

βmin =

 0,√√
µ2−3ν−µ

3ν ,
(20)

only if µ < 0 and ν > 0. Imposing additional restrictions on the poten-
tial consistent with the desired phenomenological needs, the potential and
consequently the entire model will reduce to a single free parameter. For
example in Refs.[22, 23, 24], the sextic potential was restricted to its quasi-
exactly solvable instance, while in Refs.[14, 15] it was restricted to have two
degenerated minima. In the later case, there was expected to find a split-
ting of the density probability for the ground state which would have been
a clear indication of shape coexistence. The results, however revealed only
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hints of fragmentation in the density probability of the ground state. The
clearer indications of some kind of shape coexistence were observed in the β
excited state. The reason for this hindering of the shape coexistence signa-
tures resides in the fact that there is an additional centrifugal contribution
coming from the multidimensional kinetic term of the Bohr Hamiltonian
which raises the spherical minimum such that its effect is substantially sub-
sided. This can be seen by changing the function as ψ(β) = Ψ(β)/β2. With
this change of function one can express the differential equation (16) in a
one-dimensional Schrödinger form[

− ∂2

∂β2
+ veff (β)

]
ψ(β) = ϵβψ(β), (21)

for an effective potential

vLeff (β) =
L(L+ 1) + 6

3β2
+ β2 + µβ4 + νβ6. (22)

As can be seen, even for the L = 0 states, the aforemention centrifugal
contribution is non-vanishing and has the effect of raising and displacing
the spherical minimum of the original potential v(β). Therefore, although
the original potential exhibit two minima, for certain values of parameters
µ and ν the spherical minimum of the ground state effective potential can
completely vanish. This problem was discussed in Ref.[16], where instead
of employing two degenerated minima for the original potential v(β), the
same property is used on the effective potential in the ground state band.
Although such a condition also renders the model to a single free parameter,
the minimum condition for v0eff (β) is a quartic equation in β2 and therefore
there is no analytical relationship between parameters µ and ν which realizes
the mentioned conditions. Nevertheless, numerical calculations are possible
and were carried out for few representative cases in order to ascertain the
effect of the height and width of the barrier on the energy spectrum and on
the probability distribution of the low lying states [16].

Solving the Schrödinger equation for multiple wells is not a trivial task,
and is more complex for the multi-dimensional case with central symme-
try. A highly effective procedure for solving such problems can be found
in Refs.[25, 26, 27]. By adapting this prescription to the present case and
particular numerical applications, the energies and the wave functions of
(21) with effective ground state potentials having degenerated minima are
determined through a diagonalization procedure using the basis states

Ψ̃νn(β) =

√
2β−

3
2Jν(αnβ/βW )

βWJν+1(αn)
. (23)
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Here Jν are Bessel functions of the first kind with

ν =

√
9

4
+
L(L+ 1)

3
, (24)

while αn = βWλ are their associated zeros indexed by the order n = 1, 2, 3...
and defined by the boundary conditions for a suitably chosen limiting value
βW which encompass the relevant part of the potential v(β) [27]. The bound-
ary value βW is determined such that by increasing it, all considered energy
states for a given dimension of the diagonalization basis would change no
more than a preset precision [14]. Within the set of orthogonal functions
(23), the Hamiltonian matrix to be diagonalized is

Hnm =

(
αn

yW

)2

δnm +
2
∑3

i=1 vi (yW )2i I
(ν,i)
nm

q2Jν+1(αn)Jν+1(αm)
, (25)

where v1 == 1, v2 = µ and v3 = ν. The integrals

I(ν,i)nm =

∫ 1

0
x2i+1Jν(αnx)Jν(αmx)dx, x = β/βW . (26)

are numerically calculated using some recurrence relations [26, 27] which
considerably optimize the procedure. The set of final eigenvalues for cer-
tain values of µ and ν which assure degenerate minima for the ground state
effective potential and implicitly a fixed angular momentum L belong to dif-
ferent β vibrational bands. The ground band states are obviously identified
with the lowest eigenvalues and so on. The eigenvector components found
through the diagonalization procedure represent the coefficients of the basis
expansion

ΨLk(β) =
nmax∑
n

Ak
nΨ̃νn(β), (27)

where k denotes the order of the solution and nmax is the truncated dimen-
sion of the diagonalization basis. This output is needed for the calculus
of the electromagnetic transitions and other relevant observables such as
averages and moments.

For the numerical calculation made so far in Refs.[14, 15, 16], one con-
sidered a basis with nmax = 20 states and an end precision for the diagonal-
ization convergence as the boundary βW is varied set to 10−7 units of the
absolute energy.

The restriction to have degenerate minima in the ground state effective
potential makes the barrier to increase in height and in thickness as the
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relationship between µ and ν is changed. The numerical results in this case
supports the conclusions made regarding the high barrier case, that is the
complete separation of the ground band and excited band states, whose as-
sociated probability distribution have both single peak profiles localized in
the deformed and respectively near-spherical potential wells. Decreasing the
height and the thickness of the barrier, tunneling between the two deforma-
tion configurations becomes possible. Thus, the probability distribution of
the ground state starts to spill into the first less deformed potential well,
exhibiting at some point a double peak structure. The same happens with
the probability distribution of the first β excited state, which through the
same process recovers its usual role of an one phonon vibrational mode,
with the two peaks representing the turning points of the classical vibration
around the ground state average deformation. The vibrational nature of the
first β excited state is also supported by the presence of a node in its wave
function.

4 Discussion and concluding remarks

The major difference between the two problems presented above is the pres-
ence of an additional symmetry in the one-dimensional case. Indeed, the
one-dimensional problem is invariant under the parity transformation. This
additional symmetry introduces a new quantum number related to the par-
ity of the wave function, such that the number of states is doubled up.
The doubling of eigenstates happens also in the case of asymmetric double
well problems. For the symmetrical problem, this feature can be observed
when the barrier between the positive and negative variable minima of the
potential is increased sufficiently to block any tunneling through it. The
total energy spectrum associated to this limiting case can be regarded as
corresponding to the simple one well problem but with double degeneracy
of the spectrum [28]. Additionally, the wave functions corresponding to a
doubly degenerated energy level can be expressed as symmetric and anti-
symmetric linear combinations of wave functions for vibration about each
potential minimum [29].

In the radial type double well problem, there is no additional symmetry.
Indeed, although one can always construct a double well radial potential
with a symmetrical shape in respect to its barrier, the associated wave func-
tions would not have this symmetry. Therefore, the total spectrum in such
problems is not doubled. Moreover, as there is no symmetry regarding the
two potential minima, the corresponding states cannot be interpreted as a
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superposition of two ”classical” undistinguishable states localized in each
of the potential wells. Thus, when the barrier is very high and the two
potential wells are sufficiently separated, the ground state is already local-
ized in one of the potential minima. More precisely, it seems that in radial
problems, the ground state prefer the potential well with its minimum point
positioned at the highest value. It is interesting to find that for a very high
separating barrier, the first excited state loses its vibrational nature, i.e. it
no longer have a node. Moreover it is localized in the potential well with
the minimum at the lowest value of the variable.

In conclusion, for very high separating barriers, the ground state and
first excited state in one-dimensional symmetric double well problems are
degenerated and have the same probability distribution with identical peaks
in both potential wells. The only distinction is that the ground state wave
function is symmetric, while the first excited state is anti-symmetric. In
contradistinction, the radial problem for a double well potential provide
very different energy levels for the ground and the first excited non-rotational
states whose corresponding probability density distributions are single peaks
localized in the second and respectively first potential well.

When the separating barrier is decreased such that to allow quantum
tunneling through it between the two potential wells, the degeneration of
states from the symmetrical one-dimensional case is lifted. The two states
preserve their parity signature and their double peak probability distribu-
tion. As the barrier become smaller and smaller, the full energy spectrum
becomes regular and similar to a single well potential problem. Allowing
tunneling in the radial double well case, allows a gradual redistribution of
the probability distribution for each state in both potential wells. This also
marks the apparition of a node in the first excited state, fact which confers
it a vibrational-like nature. For specific shapes of the radial double well
potential, the probability distribution for the ground state can present a
double peak structure which however is not conditioned by the degeneracy
of the two potential minima.

In summary, the study of physical systems with the help of double well
potentials reveals also some analytical aspects never discussed before. More-
over, given the fact that each problem corresponds to real physical phe-
nomena, the encountered quantum mechanical effects acquire some physical
interpretation.
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