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1. Introduction

In partition theory, the following two classical theta identities
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(−q; q)∞

= 1 + 2
∞∑
j=1

(−1)jqj
2

(1.1)
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and

(q2; q2)∞
(−q; q2)∞

=
∞∑
j=0

(−q)j(j+1)/2 (1.2)

are often attributed to Gauss [1, p.23 eq. (2.2.13)].
Recall that the q-shifted factorial is defined by

(a; q)∞ =
∞∏
k=0

(1 − aqk) and (a; q)n = (a; q)∞
(aqn; q)∞

for any n. Because the infinite product (a; q)∞ diverges when a �= 0 and |q| � 1, whenever 
(a; q)∞ appears in a formula, we shall assume |q| < 1.

We remark that the reciprocal of the infinite product in (1.1) is the generating function 
for the number of overpartitions of n, i.e.,

(−q; q)∞
(q; q)∞

=
∞∑

n=0
p(n)qn. (1.3)

Recall that an overpartition of the nonnegative integer n is a partition of n where the 
first occurrence of each part may be overlined or not (see Corteel and Lovejoy [5]). For 
example, the overpartitions of 3 are:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

We see that p(3) = 8. Sometimes it is convenient to overline the last occurrence 
of a part rather than the first. For convenience, we use the two version of the def-
inition interchangeably. We use the graphical interpretation of overpartitions given 
in [5]. Here, overpartitions correspond to diagrams in which corners may be colored 
black.

On the other hand, the reciprocal of the infinite product in (1.2) is the generating 
function for the number of partitions of n in which odd parts are not repeated, i.e.,

(−q; q2)∞
(q2; q2)∞

=
∞∑

n=0
pod(n)qn. (1.4)

The properties of the partition function pod(n) were studied in [8] by Hirschhorn and 
Sellers.

Motivated by Andrews and Merca’s work [2], Guo and Zeng [6] considered two trun-
cated versions of these identities and obtained the following results:
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(−q; q)∞
(q; q)∞

⎛
⎝1 + 2

k∑
j=1

(−1)jqj
2

⎞
⎠

= 1 + (−1)k
∞∑

n=k+1

(−q; q)k(−1; q)n−kq
(k+1)n

(q; q)n

[
n− 1
k − 1

]
q

(1.5)

and

(−q; q2)∞
(q2; q2)∞

2k−1∑
j=0

(−q)j(j+1)/2 (1.6)

= 1 + (−1)k−1
∞∑

n=k

(−q; q2)k(−q; q2)n−kq
2(k+1)n−k

(q2; q2)n

[
n− 1
k − 1

]
q2
,

where the q-binomial coefficient is defined by

[
n
k

]
=

[
n
k

]
q

=

⎧⎪⎨
⎪⎩

0, if k < 0 or k > n

(q; q)n
(q; q)k(q; q)n−k

, otherwise.

Using (1.3) and (1.4), they deduced the following partition inequalities:

(−1)k
⎛
⎝p(n) + 2

k∑
j=1

(−1)jp(n− j2)

⎞
⎠ � 0 (1.7)

and

(−1)k−1
k−1∑
j=0

(−1)j
(

pod
(
n− j(2j + 1)

)
− pod

(
n− (j + 1)(2j + 1)

))
� 0. (1.8)

Very recently, Andrews and Merca [3] provided the following revisions of (1.5) and 
(1.6):

(−q; q)∞
(q; q)∞

⎛
⎝1 + 2

k∑
j=1

(−1)jqj
2

⎞
⎠ (1.9)

= 1 + 2(−1)k (−q; q)k
(q; q)k

∞∑
j=0

q(k+1)(j+k+1)(−qj+k+2; q)∞
(1 − qj+k+1)(qj+k+2; q)∞

and
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(−q; q2)∞
(q2; q2)∞

2k−1∑
j=0

(−q)j(j+1)/2 (1.10)

= 1 − (−1)k (−q; q2)k
(q2; q2)k−1

∞∑
j=0

qk(2j+2k+1)(−q2j+2k+3; q2)∞
(q2k+2j+2; q2)∞

,

from which they deduced the following partition-theoretic interpretations of the sums in 
(1.7) and (1.8).

Theorem 1. For n, k � 1,

(−1)k
(
p(n) + 2

k∑
j=1

(−1)jp(n− j2)
)

= Mk(n),

where Mk(n) is the number of overpartitions of n in which the first part larger than k
appears at least k + 1 times.

Theorem 2. For n, k � 1,

(−1)k−1
k−1∑
j=0

(−1)j
(

pod(n− j(2j + 1)) − pod(n− (j + 1)(2j + 1))
)

= MPk(n),

where MPk(n) is the number of partitions of n in which the first part larger than 2k− 1
is odd and appears exactly k times, and all other odd parts appear at most once.

As another consequence of (1.10), Andrews and Merca [3] provided an interesting 
inequality related to Euler’s partition function p(n): if at least one of n and k is odd 
then

(−1)k−1
k−1∑
j=0

(−1)j
(
p
(
n− j(2j + 1)

)
− p

(
n− (j + 1)(2j + 1)

))
� 0. (1.11)

Inspired by Theorem 2, we provide the following interpretation of the sum in this in-
equality.

Theorem 3. For n, k � 1,

(−1)k−1
k−1∑
j=0

(−1)j
(
p
(
n− j(2j + 1)

)
− p

(
n− (j + 1)(2j + 1)

))
= (−1)k−1G0(n) +Gk(n),

where:
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G0(n) is the number of overpartitions of n in which there are even overlined parts 
only;
Gk(n) is the number of overpartitions of n in which only even parts may be overlined, 
the first non-overlined part larger than 2k − 1 is odd and appears exactly k times, 
and all other odd parts appear at most once.

The purpose of this paper is to provide combinatorial proofs of these theorems. In 
addition, we exhibit some relations involving the numbers Mk(n) and MPk(n).

We remark that in the last five years the truncated theta series have been the subject 
of study in several papers by Andrews and Merca [2,3], Guo and Zeng [6], Mao [10], 
Kolitsch [9], He, Ji and Zang [7], Chan, Ho and Mao [4], and Yee [11].

2. Combinatorial proofs of Theorem 1

2.1. The first proof

Note that p(n) = M0(n). Then, the statement of Theorem 1 is equivalent to

2p(n− (k + 1)2) = Mk+1(n) + Mk(n), ∀n � 1, k � 0.

We denote by P (n) the set of overpartitions of n and by Mk(n) the set of overparti-
tions of n in which the first part larger than k appears at least k + 1 times. Note that 
Mk(n) and Mk+1(n) are not disjoint.

The intersection, Mk(n) ∩Mk+1(n), is the union of the following disjoint sets.

Ak(n): Partitions of n with no parts equal to k + 1 and the first part greater than 
k + 1 appears at least k + 2 times.
Bk(n): Partitions of n with at least k + 1 parts equal to k + 1 and the first part 
greater than k + 1 appears at least k + 2 times.

The set Mk(n) \Mk+1(n) is the union of the following disjoint sets.

Ck(n): Partitions of n with at least k + 1 parts equal to k + 1 and the first part 
greater than k + 1 appears at most k + 1 times. Note that it is possible for k + 1 to 
be the largest part.
Dk(n): Partitions of n with no parts equal to k + 1 and the first part greater than 
k + 1 appears exactly k + 1 times.

The set Mk+1(n) \Mk(n) is

Ek+1(n): Partitions of n in which k + 1 appears at least once and at most k times 
and the first part greater than k + 1 appears at least k + 2 times.
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Fig. 1. Case I with k = 2.

Let P ′(n −(k+1)2), respectively A′
k(n), B′

k(n), be the multiset consisting of overparti-
tions in P (n −(k+1)2), respectively partitions in Ak(n), Bk(n), each with multiplicity 2. 
If λ ∈ P (n − (k + 1)2), respectively Ak(n), Bk(n), we refer to the two copies of λ in 
P

′(n −(k+1)2), respectively A′
k(n), B′

k(n), as λ and λ̃. Then, we have the disjoint union

Mk(n) �Mk+1(n) = A′
k(n) ∪B′

k(n) ∪ Ck(n) ∪Dk(n) ∪ Ek+1(n).

Thus, |P ′(n − (k + 1)2)| = 2p(n − (k + 1)2) and

|Mk(n) �Mk+1(n)| = |A′
k(n) ∪B′

k(n) ∪ Ck(n) ∪Dk(n) ∪ Ek+1(n)|

= Mk+1(n) + Mk(n).

We provide a one-to-one correspondence between P
′(n − (k + 1)2) and Mk(n) �

Mk+1(n).
Let λ ∈ P (n − (k + 1)2). Let t be the multiplicity of k + 1. Let s be the first part 

greater than k + 1. We denote by m its multiplicity. Thus, t, m � 0.
We consider the following cases.

Case I: t = 0 or t � 1 and k + 1 is not a part of λ.

To λ add k + 1 parts equal to k + 1. To λ̃ add k + 1 parts equal to k + 1 and overline 
the first k + 1. The resulting overpartitions are in Bk(n) ∪ Ck(n). (See Fig. 1.)

Case II: t � 1 and k + 1 is a part of λ. We have three subcases

(i) s = 0 or s > k + 1 + t. In λ and λ̃ replace all t parts equal to k + 1 by k + 1 parts 
equal to k + 1 + t. In the overpartition coming from λ̃ overline the first k + 1 + t. The 
resulting overpartitions are in Dk(n).

(ii) s = k + 1 + t. In λ and λ̃ replace all t parts equal to k + 1 together with the m
parts equal to s by k + 1 + m parts equal to k + 1 + t. Note that we obtain the same 
overpartition regardless of whether the first part equal to k+1 + t is overlined or not. In 
the overpartition coming from λ̃ overline the first k + 1 + t. The resulting overpartitions 
are in Ak(n). Each such overpartition appears twice. (See Fig. 2.)

(iii) k + 2 � s < k + 1 + t. In λ and λ̃ replace all t parts equal to k + 1 together with 
m − 1 parts equal to s by k +m parts equal to s and k + 1 + t − s parts equal to k + 1. 
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Fig. 2. Case II with k = 2, t = 2.

In the overpartition coming from λ̃ overline the first k+1. Note that the first part equal 
to s in λ and λ̃ was left unchanged. The resulting overpartitions are in Bk(n) ∪Ek+1(n).

This transformation is injective.
Next, we describe the inverse of the above transformation. Let λ ∈ Mk(n) �Mk+1(n). 

Again, we denote by s the first part greater than k + 1 and by m its multiplicity.

Case 1: λ ∈ Ak(n). There are no parts equal to k + 1 and k + 1 +m parts equal to s, 
where m � 1.

Replace k + 1 parts equal to s by s − k− 1 parts equal to k + 1 and overline the first 
k + 1. The first part equal to s remains unchanged. Do the same process for λ̃. Each 
partition obtained belongs to P (n − (k + 1)2) and appears twice.

Case 2: λ ∈ Bk(n). There are at least k + 1 + t parts equal to k + 1, where t � 0, and 
m � k + 2. Replace all k + 1 + t parts equal to k + 1 by t parts equal to k + 1 (no such 
part is overlined). We obtain the same partition from P (n − (k + 1)2) twice (once from 
λ with the first k + 1 overlined and once from λ with the first k + 1 not overlined).

In λ̃, replace k + 1 parts equal to s and all k + 1 + t parts equal to k + 1 by s + t

parts equal to k + 1 and overline the first k + 1. We obtain the same partition from 
P (n − (k + 1)2) twice (once from λ̃ with the first k + 1 overlined and once from λ̃ with 
the first k + 1 not overlined).

Case 3: λ ∈ Ck(n). There are at least k + 1 + t parts equal to k + 1, where t � 0, and 
0 � m � k + 1. Replace all k + 1 + t parts equal to k + 1 by t parts equal to k + 1 (no 
such part is overlined). We obtain the same partition from P (n − (k + 1)2) twice (once 
from λ with the first k + 1 overlined and once from λ with the first k + 1 not overlined).

Case 4: λ ∈ Dk(n). There are no parts equal to k+1 and m = k+1. Replace all k+1
parts equal to s by s − k− 1 parts equal to k + 1 and overline the first k + 1. We obtain 
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Fig. 3. 1–1 correspondence between P (n − 32) and S2(n).

the same partition from P (n − (k + 1)2) twice (once from λ with the first s overlined 
and once from λ with the first s not overlined).

Case 5: λ ∈ Ek+1(n). Part k + 1 appears t times, where 1 � t � k, and m � k + 2. 
Replace k + 1 parts equal to s and all t parts equal to k + 1 by s + t − k− 1 parts equal 
to k + 1 and overline the first k + 1. We obtain the same partition from P (n − (k + 1)2)
twice (once from λ with the first k+1 overlined and once from λ with the first k+1 not 
overlined).

Again, this transformation is injective.

2.2. The second proof

Alternatively, we can first find a bijection for one copy of P (n −(k+1)2) with a subset 
of Mk(n) as follows: let Sk(n) denote the set of partitions from Mk(n) in which there 
are at least k+1 nonoverlined parts of k+1, and let NSk(n) denote the set of partitions 
from Mk(n) in which there are less than k + 1 nonoverlined parts of k + 1. Clearly, the 
sets Sk(n) and NSk(n) are disjoint and

Mk(n) = Sk(n) ∪NSk(n)

The sets P (n − (k+1)2) and Sk(n) are in 1–1 correspondence, since for any partition 
in P (n − (k+1)2), we can add a square of size (k+1) × (k+1) into its Ferrers diagram. 
The inverse is just removing a (k + 1) × (k + 1) square from the Ferrers diagram of a 
partition in Sk(n). (See Fig. 3.) This implies |P (n − (k + 1)2)| = |Sk(n)|. It is left to 
show that

|P (n− (k + 1)2)| = |NSk(n)| + |Mk+1(n)|.

First, note that any partitions in NSk(n) contains 0 or k nonoverlined parts of k + 1. 
Thus, the set NSk(n) is the union of the following disjoint sets:

Ak(n): Partitions of n with no parts equal to k + 1, and the first part greater than 
k + 1 appears at least k + 1 times
Bk(n): Partitions of n with exactly k+1 parts equal to k+1, in which the part k+1
is also overlined.

The set Mk+1(n) is the union of the following disjoint sets.
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Ck(n): Partitions of n with no parts equal to k + 1, and the first part greater than 
k + 1 appears at least k + 2 times
Dk(n): Partitions of n in which k+1 appears at least once, and the first part greater 
than k + 1 appears at least k + 2 times

Thus

|(Ak(n) ∪ Bk(n)) � (Ck(n) ∪ Dk(n))| = |NSk(n)| + |Mk+1(n)|.

Note that not all of these sets are piecewise disjoint. For example, 4+3 +3 +3 belongs 
to A1 ∩ C1, and 3 + 3 + 3 + 2 + 2 belongs to B1 ∩ D1. Because of this, we will treat a 
partition λ in NSk(n) and λ̃ in Mk+1(n) as separate objects.

We now present a 1–1 correspondence between P (n − (k+1)2) and (Ak(n) ∪Bk(n)) �
(Ck(n) ∪ Dk(n)).

Again, let λ ∈ P (n − (k + 1)2). Let t be the multiplicity of k + 1. Let s be the first 
part greater than k + 1. We denote by m its multiplicity.

Case I: t = 0.

Insert a (k + 1) × (k + 1) square with lower right corner colored black into λ. The 
resulting overpartition is in Bk(n).

Case II: t � 1 and either m = 0 or m � 1 with t + k + 1 < s.

Insert a (k + 1) × (k + 1) square above rows of length k + 1 in λ, then conjugate all 
rows of length k + 1. The resulting overpartition is in Ak.

Case III: t � 1, m � 1 and t + k + 1 > s.

Insert a (k + 1) × (k + 1) square above rows of length k + 1 in λ, then conjugate 
the first s rows equal to k + 1 and place them above the rows equal to s. The resulting 
overpartition is in Dk(n).

Case IV: t � 1, m � 1 and t + k + 1 = s. We have two subcases

(i) s is not overlined. Insert a (k+1) × (k+1) square above rows of length k+1 in λ, 
then conjugate all rows of length k + 1. The resulting overpartition is in Ak.

(ii) s is overlined. First erase the color black from s. Insert a (k + 1) × (k + 1) square 
above rows of length k + 1 in λ, then conjugate all rows of length k + 1. The resulting 
overpartition is in Ck.

Since we treat partitions from each Ak(n) ∪ Bk(n) and Ck(n) ∪ Dk(n) as different 
objects, this transformation is injective. (See Fig. 4.)

As for the inverse of the transformation, first we consider a partition λ from NSk(n). 
Denote by s the first part greater than k + 1 and by m its multiplicity.

Case 1A: λ ∈ Ak(n). There are no parts equal to k + 1 and m � k + 1.
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Fig. 4. Transformation from P (n − 32) to (A2(n) ∪ B2(n)) � (C2(n) ∪ D2(n)).

Remove a (k+1) ×(k+1) square from the lower left corner of rows of s, then conjugate 
the leftover parts. The results are precisely Case II and Case IV(i).

Case 1B: λ ∈ Bk(n). There are exactly k + 1 parts equal to k + 1, the last of which is 
overlined.

Remove the (k + 1) × (k + 1) square from λ. The result is precisely Case I.

Next, consider a partition λ̃ from Mk+1(n) and denote by s the first part greater than 
k + 1 and by m its multiplicity.

Case 2A: λ̃ ∈ Ck(n). There are no parts equal to k + 1 and m � k + 2.
Remove a (k + 1) × (k + 1) square from the lower left corner of rows of s, then 

conjugate the leftover parts. Also, color the lower right corner of rows of s black. The 
result is precisely Case IV(ii).

Case 2B: λ̃ ∈ Dk(n). The parts k + 1 appear at least once and m � k + 2.
Remove a (k+1) ×(k+1) square from the upper left corner of rows of s, then conjugate 

the leftover parts and insert them above rows of k + 1. The result is precisely Case III.

Again, this transformation is injective.

3. Combinatorial proof of Theorem 2

Note that MP0(n) = 0. Then, the statement of Theorem 2 is equivalent to

pod(n− k(2k + 1)) − pod(n− (k + 1)(2k + 1)) = MPk+1(n) + MPk(n),
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Fig. 5. Example of injection for k = 2 from POD(n − 15) into POD(n − 10).

for all n � 1, k � 0.
We denote by POD(n) the set of partitions of n in which odd parts are not repeated. 

We also denote by Mk(n) the set of partitions of n in which the first part larger than 
2k − 1 is odd and appears exactly k times and all other odd parts appear at most once. 
Note that Mk(n) ∩Mk+1(n) = ∅.

First, we construct an injection from POD(n − (k+1)(2k+1)) into the set POD(n −
k(2k + 1)). Let λ ∈ POD(n − (k + 1)(2k + 1)). If λ has no part equal to 2k + 1, add a 
part equal to 2k + 1 to λ to obtain a partition μ ∈ POD(n − k(2k + 1)). If λ has a part 
equal to 2k+1, replace it by a part equal to 2k+2 and add a part equal to 2k to obtain 
a partition μ ∈ POD(n − k(2k + 1)). This map is clearly injective. (See Fig. 5.)

Let A(n − k(2k + 1)) be the subset of POD(n − k(2k + 1)) obtained by removing all 
partition μ obtained by the injection above from partitions in POD(n − (k+1)(2k+1)). 
Then,

pod(n− k(2k + 1)) − pod(n− (k + 1)(2k + 1)) = |A(n− k(2k + 1))|.

The partitions in A(n − k(2k + 1)) satisfy all of the following three conditions:

(i) all odd parts appear at most once,
(ii) 2k + 1 does not appear as a part,
(iii) parts 2k + 2 and 2k do not appear together.

Next, we will construct a bijection

A(n− k(2k + 1)) −→ Mk(n) ∪Mk+1(n).

Let λ ∈ A(n −k(2k+1)). Then, λ has no repeated odd parts, no part equal to 2k+1, 
and parts 2k and 2k+2 do not appear together. Denote by s the multiplicity of 2k in λ. 
We will create from λ a partition μ of n as follows.

Case A: s = 0. To obtain μ we add k parts equal to 2k + 1 to λ. Then μ ∈ Mk(n).

Case B: s � 1. Then λ has no part equal to 2k + 2. Let � = s + k. Moreover, let t
denote the length of the first part greater than 2k + 1, if it exists.
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Fig. 6. Example of mapping for k = 2 from A(n − 10) into M3(n).

Fig. 7. Example of mapping for k = 2 from A(n − 10) into M3(n).

If t � 2� + 2 or there is no part greater than 2k + 1, replace the s parts of λ equal to 
2k by k parts equal to 2� + 1. We obtain a partition μ of

n− k(k + 1) − s · 2k + k(2� + 1) = n− k(k + 1) − s · 2k + k(2s + 2k + 1) = n

which is in Mk(n).
If t � 2� + 1, we consider two subcases.

Case a: t is odd. Say t = 2p +1. Since � = s +k, we have � > k and t � 2� +1 gives p � �, 
or equivalently p −k � s. We replace the part equal to t and p −k parts equal to 2k by k+1
parts equal to 2p +1 to obtain a partition μ of n −k(2k+1) −t −(p −k) ·2k+(k+1)(2p +1) =
n. Since there is no part equal to 2k + 2, we have μ ∈ Mk+1(n).

Case b: t is even. Say t = 2p. We still have p − k � s (since t is even and t � 2� + 1, 
we have t � 2�. Thus, p � � and p − k � � − k = s). We replace one part equal to t and 
p − k parts equal to 2k by k + 1 parts equal to 2p − 1 and one part equal to 2k + 1 to 
obtain a partition μ of n − k(2k + 1) − t − (p − k) · 2k + (k + 1)(2p − 1) + 2k + 1 = n. 
Since λ had no part equal to 2k+2, t = 2p > 2k+2 and thus 2p −1 > 2k+1. Moreover, 
μ has no part equal to 2k + 2. Thus, μ ∈ Mk+1(n).

This transformation is injective. (See Figs. 6 and 7.)
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Finally, we need to show that we can reverse this map with an injection from 
Mk+1(n) ∪Mk(n) into A(n − k(2k + 1)).

Let μ ∈ Mk(n) ∪Mk+1(n). We will create from μ a partition λ ∈ A(n − k(2k + 1))
as follows.

Case I: μ ∈ Mk(n). Let 2� + 1 be the first part larger than 2k− 1. It appears exactly 
k times and we have � � k. Moreover, μ has no part equal to 2k.

We replace the k parts of μ that are equal to 2� + 1 by � − k parts equal to 2k. We 
obtain a partition of n − k(2� + 1) + 2k(� − k) = n − k(2k + 1) with exactly � − k parts 
equal to 2k and no parts of size 2k + 1, . . . , 2� + 1. Thus, if � = k, then there is no part 
equal to 2k and no part equal to 2k + 1. If � > k, there is no part equal to 2k + 1 and 
no part equal to 2k + 2. The obtained partition λ is in A(n − k(2k + 1)).

Case II: μ ∈ Mk+1(n). Let 2� + 1 be the first part larger than 2k + 1. Then by the 
definition of Mk+1(n), there are exactly k + 1 parts equal to 2� + 1 and no parts equal 
to 2k + 2.

If μ has a part equal to 2k+ 1, we replace this part by a part equal to 2k and replace 
one of the parts equal to 2� +1 by a part equal to 2� +2. If μ does not have a part equal 
to 2k + 1, then we do nothing. We denote the resulting partition by μ′.

As in Case I, we replace k parts of μ′ that are equal to 2� + 1 by � − k parts equal 
to 2k. We obtain a partition of n − k(2� + 1) + 2k(� − k) = n − k(2k + 1) with at least 
� − k parts equal to 2k. Note that the resulting partition has no part of size 2k+ 2 since 
there were no parts of size 2k + 2 in μ′. Also, since � > k and 2k + 1 was replaced if it 
was in μ, there are no parts of size 2k+1, . . . , 2� −1. If there was no part equal to 2k+1
in μ, there will be one part of size 2� + 1 in the resulting partition since we replaced 
only k parts of the k + 1 parts equal to 2� + 1. Thus, the resulting partition satisfies the 
conditions for A(n − k(2k + 1)).

Clearly, this map restricted to Mk(n), respectively to Mk+1(n), is an injection. We 
need to show that the set of partitions obtained in Case I is disjoint from the set of 
partitions obtained in Case II. To see this, let s be the multiplicity of 2k in λ and let t
be the first part greater than 2k. Then, in Case I we have t � 2s + 2k + 2 while in Case 
II we have t � 2s + 2k + 1.

4. Combinatorial proof of Theorem 3

The statement of Theorem 3 is equivalent to

p
(
n− k(2k + 1)

)
− p

(
n− (k + 1)(2k + 1)

)
= Gk(n) + Gk+1(n). (4.1)

We first show that

p
(
n− k(2k + 1)

)
− p

(
n− (k + 1)(2k + 1)

)
= Ak

(
n− k(2k + 1)

)
, (4.2)

where Ak(n) is the number of overpartitions of n in which
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i) only even parts may be overlined;
ii) all odd parts are distinct;
iii) 2k + 1 does not appear as a part;
iv) non-overlined 2k and 2k + 2 do not appear together.

For a partition λ, let fi := fi(λ) be the number of occurrences of i as a part in λ. We 
first separate 2
f2i−1/2� many (2i − 1)’s from λ so that odd parts are all distinct in the 
resulting partition μ. We also denote by π the partition consisting of the separated odd 
parts from λ.

We pair up the parts of the same size (2i − 1) in π and add the parts in each pair to 
get parts (4i − 2). Then the application of the Sylvester bijection for Euler’s partition 
identity on partitions into odd parts and partitions into distinct parts yields a partition 
into even distinct parts. By abuse of notation, we call the resulting partition π.

Also, note that μ is a partition in which odd parts are distinct. Throughout this 
section, we will call such partitions POD partitions.

Thus, by this decomposition, we see that

p(n) =
n∑

m=0
pod(m)Q

(
(n−m)/2

)
,

where Q(n) is the number of partitions of n into distinct parts and

∞∑
n=0

Q(n)qn = (−q; q)∞.

Suppose that λ is a partition of 
(
n − (k + 1)(2k + 1)

)
for some n and μ, obtained as 

above, is a partition of 
(
m − (k + 1)(2k + 1)

)
for some m.

Since μ is a POD partition, we can apply to μ the injection from POD
(
m − (k +

1)(2k + 1)
)

to POD
(
m − k(2k + 1)

)
defined in Section 3. Thus,

p
(
n− k(2k + 1)

)
− p

(
n− (k + 1)(2k + 1)

)
counts the number of partitions that can be decomposed into μ and π, where μ is a 
partition counted by A(m − k(2k + 1)) for some m and π is a partition of (n −m) into 
distinct even parts.

We now overline all the parts of π and combine them with the parts of μ, which results 
in a partition counted by Ak

(
n − k(2k + 1)

)
.

By (4.1) and (4.2), we need to show

Ak

(
n− k(2k + 1)

)
= Gk(n) + Gk+1(n). (4.3)
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We note that for a partition counted by Gk(n), its non-overlined parts form a partition 
counted by MPk(m), for some m, and the overlined parts form a partition into distinct 
even parts.

Now, for a partition λ counted by Ak

(
n − k(2k + 1)

)
, we decompose it into μ and 

π. It follows from the definition of Ak

(
n − k(2k + 1)

)
that μ is a partition counted by 

A
(
n − k(2k + 1)

)
. We then apply to μ the bijection between Ak

(
n − k(2k + 1)

)
and 

Mk(n) ∪Mk+1(n) described in Section 3. Combining the resulting partition with π, we 
obtain a partition counted by Gk(n) or Gk+1(n). This process is clearly reversible, which 
completes the proof.

5. Further relations involving Mk(n) and MPk(n)

First, we present two identities related to Euler’s pentagonal number theorem

∞∑
j=−∞

(−1)jqj(3j−1)/2 = (q; q)∞.

To simplify the expressions, we use the conventions Mk(0) = (−1)k and MPk(0) =
(−1)k−1 instead of Mk(0) = 0 and MPk(0) = 0, respectively. These are necessary when 
n is a generalized pentagonal number. For any negative integer n, we consider Mk(n) = 0
and MPk(n) = 0.

Corollary 4. For n, k � 1,

∞∑
j=−∞

(−1)jMk(n− j(3j − 1)/2) = (−1)k
⎛
⎝Q(n) + 2

k∑
j=1

(−1)jQ(n− j2)

⎞
⎠ .

Proof. By the identity (1.9) and Theorem 1, we obtain

(−1)k(−q; q)∞

⎛
⎝1 + 2

k∑
j=1

(−1)jqj
2

⎞
⎠ = (q; q)∞

∞∑
n=0

Mk(n)qn.

The proof follows easily considering Euler’s pentagonal number theorem and the gener-
ating function for the number of partitions of n into distinct parts. �
Corollary 5. For n, k � 1,

∞∑
j=−∞

(−1)jMPk(n− j(3j − 1)/2) = (−1)k−1
2k−1∑
j=0

(−1)j(j+1)/2g (n− j(j + 1)/2) ,

with
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g(n) =
{

(−1)n/2Qodd(n/2), for n even,
0, for n odd,

where Qodd(n) is the number of partitions of n into distinct odd parts.

Proof. The proof is similar to the proof of Corollary 4. According to Theorem 2, we 
rewrite (1.10) as

(−1)k−1(q2; q4)∞
2k−1∑
j=0

(−q)j(j+1)/2 = (q; q)∞
∞∑

n=0
MPk(n)qn

Taking into account the generating function for the number of partitions of n into distinct 
odd parts

∞∑
n=0

Qodd(n)qn = (q; q2)∞

and Euler’s pentagonal numbers theorem, the proof follows. �
Next we give other connections with partitions into distinct odd parts. As usual, p(n)

denotes the number of unrestricted partitions of n.

Corollary 6. For n, k � 1,

(−1)k
⎛
⎝p(n) + 2

k∑
j=1

(−1)jp(n− j2)

⎞
⎠

= (−1)n+kQodd(n) +
n−1∑
j=0

(−1)jQodd(j)Mk(n− j).

Proof. This follows from (1.9) and Theorem 1, considering the generating function of 
Qodd(n). �

Corollary 6 allows us to derive the following partition inequality.

Corollary 7. For n, k � 1,

(−1)k
⎛
⎝p(n) + 2

k∑
j=1

(−1)jp(n− j2)

⎞
⎠ � (−1)n+kQodd(n).
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Proof. To prove this inequality, we need to show that

n−1∑
j=0

(−1)jQodd(j)Mk(n− j) � 0.

We consider the following combinatorial interpretation of (1.1)

p(n) + 2
∞∑
j=1

(−1)jp(n− j2) = (−1)nQodd(n).

From Corollary 6, we deduce that

n−1∑
j=0

(−1)jQodd(j)Mk(n− j) = 2(−1)k+1
∞∑

j=k+1

(−1)jp(n− j2) � 0,

where we have invoked that p(n) is an increasing function. �
We end this sections with a corollary of Theorem 2.

Corollary 8. For n, k � 1,

(−1)k−1
2k−1∑
j=0

(−1)j(j+1)/2p(n− j(j + 1)/2)

= (−1)k−1 1 + (−1)n

2 Q(n/2) +

⌊
n−1

2
⌋∑

j=0
Q(j)MPk(n− 2j).

Proof. This follows from (1.10) and Theorem 2, considering the generating functions of 
p(n) and Q(n). �

As a consequence of this result, we remark that

(−1)k−1

⎛
⎝2k−1∑

j=0
(−1)j(j+1)/2p(n− j(j + 1)/2) − 1 + (−1)n

2 Q(n/2)

⎞
⎠ � 0,

for all n, k � 1.
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