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Euler–Riemann Zeta Function and
Chebyshev–Stirling Numbers of the
First Kind

Cristina Ballantine and Mircea Merca

Abstract. In this paper, we give asymptotic formulas that combine the
Euler–Riemann zeta function and the Chebyshev–Stirling numbers of
the first kind. These results allow us to prove an asymptotic formula
related to the nth complete homogeneous symmetric function, which
was recently conjectured by the second author:
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as n → ∞.

A direct proof of this asymptotic formula, due to Gergő Nemes, is pro-
vided in Appendix.
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1. Introduction

The first object of our investigation is the Riemann zeta function or Euler–
Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

, �(s) > 1.

This function is continued analytically to the entire complex plane with a
single pole at s = 1 and plays a crucial role in analytic number theory. It
has applications to physics, probability theory, applied statistics and other
fields of mathematics. There is an enormous amount of literature on the
Riemann zeta function. The reader should consult the classical papers by
Abramowitz and Stegun [1], Apostol [6], Berndt [8], Everest et al. [10], Ireland
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and Rosen [16], Murty and Reece [29], and Weil [32] for the full background
on this function. Originally, the Riemann zeta function was defined for real
arguments by Euler as

ζ(x) =
∞∑

n=1

1
nx

, x > 1.

Euler first started to develop the theory of this function and obtained in 1734
the famous formula for even positive zeta values

ζ(2n) = (−1)n+1 (2π)2n

2 · (2n)!
B2n, (1)

where n is a positive integer and Bn is the nth Bernoulli number. There are
many proofs of this formula, some of them elementary, see, e.g., [5,7–9,30,
31,33,34]. Very recently [23,24,26], the second author introduced a number
of infinite families of linear recurrence relations for ζ(2n) and established
formulas for ζ(2n), ζ(4n) and ζ(8n) as sums over all the unrestricted integer
partitions of n.

The second object of our investigation are the Chebyshev–Stirling num-
bers of the first kind which are known in the literature [12,13,19] as the case
γ = 1/2 of the Jacobi–Stirling numbers of the first kind. These numbers can
be given through the recurrence relation[

n
k

]
γ

=
[
n − 1
k − 1

]
γ

+ (n − 1)(n + 2γ − 2)
[
n − 1

k

]
γ

with the initial conditions[
n
0

]
γ

= δ0,n and
[
0
k

]
γ

= δ0,k,

where δi,j is the Kronecker delta. Recall that the Jacobi–Stirling numbers
were discovered in 2007 as a result of a problem involving the spectral the-
ory of powers of the classical second-order Jacobi differential expression. In
the last years, these numbers received considerable attention especially in
combinatorics and graph theory, see, e.g., [2–4,11–15,18,19,22,27,28].

Throughout the article, the symbol ∼ means asymptotic equivalence,
i.e., we write an ∼ bn when lim

n→∞
an

bn
= 1 (we also use ∼ for the asymptotic

equivalence of functions). In the literature, asymptotic equivalence is mostly
used to compare the growth of unbounded functions. However, in this article,
we compare the behavior of convergent functions and sequences. Note that if
an ∼ bn and bn is convergent, then limn→∞(an − bn) = 0. If bn converges to
a non-zero limit, then lim

n→∞(an − bn) = 0 implies an ∼ bn. For convenience,

we write an ≈ bn to mean lim
n→∞(an − bn) = 0.

The asymptotic behavior of the Chebyshev–Stirling numbers of the first
kind was recently established by the second author in [20], i.e.,

1
n!2

[
n + 1
k + 1

]
1/2

∼ π2k

(2k + 1)!
as n → ∞.
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On the other hand, the Chebyshev–Stirling numbers of the first kind were
recently used to obtain new asymptotic formulas for the cardinal sine function

sincπ(x) ∼ 1
(n!)2

n∑
k=0

(−1)k

[
n + 1
k + 1

]
1/2

x2k as n → ∞,

and the hyperbolic cardinal sine function

sinhcπ(x) ∼ 1
(n!)2

n∑
k=0

[
n + 1
k + 1

]
1/2

x2k as n → ∞,

where x is a real or complex number. More details about these asymptotic
formulas can be found in [21].

In this paper, motivated by these asymptotic results, we provide new
asymptotic formulas that combine the Euler–Riemann zeta function and the
Chebyshev–Stirling numbers of the first kind.

Theorem 1.1. For any integer k � 0, we have
k∑

i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(x − 2i) ∼ (−1)k (2k + 1)!
(k + 1)x+1

as x → ∞.

Let η be the characteristic function of the set of even numbers, i.e.,

η(n) =

{
1 if n is even,
0 else.

Theorem 1.2. For any integer k � 0, we have
k∑

i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(x − 2i)
2x−2i

∼ (−1)k (2k + 1 + η(k))!
(k + 1 + η(k))x+1

as x → ∞.

Due to Euler’s formula (1), we have the following special cases of these
theorems.

Corollary 1.3. For k � 0,
k∑

i=0

[
k + 1
i + 1

]
1/2

(2π)2n−2i

(2n − 2i)!
B2n−2i ∼ (−1)n+k+1 2 · (2k + 1)!

(k + 1)2n+1
as n → ∞.

Corollary 1.4. Let n and k be non-negative integers.
k∑

i=0

[
k+1
i+1

]
1/2

π2n−2i

(2n − 2i)!
B2n−2i ∼(−1)n+1+k 2 · (2k+1 +η(k))!

(k+1+η(k))2n+1
as n → ∞.

The sums on the left hand side of the statements in Theorems 1.1 and
1.2 are remarkably similar to the sum involved in the asymptotic formula for
sincπ(x). One might ask what other results could be obtained by replacing x
with other interesting functions.

Being given an infinite set of variables {x1, x2, x3, . . .}, recall [17] that
the nth complete homogeneous symmetric function hn is the sum of all mono-
mials of total degree n in these variables so that h0 = 1 and for n > 0

hn = hn(x1, x2, x3, . . .) =
∑

1�i1�i2�···�in

xi1xi2 . . . xin .
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As an important application of Theorems 1.1 and 1.2 we prove the
following result, which was recently conjectured by the second author [25,
Conjecture 2].

Theorem 1.5. For k > 0,

hn

(
1,

(
k

k + 1

)2

,

(
k

k + 2

)2

, . . .

)
∼

(
2k

k

)
as n → ∞. (2)

Recently, Gergő Nemes proved the asymptotic formula of Theorem 1.5
directly. He kindly allowed us to include his proof in Appendix.

The strength of Theorem 1.5 lies in the fact that it allows for the ap-
proximation of a complete homogeneous symmetric function with infinitely
many parameters by a binomial coefficient which is itself a symmetric func-
tion in a finite number of parameters. Moreover, the binomial coefficients can
be approximated via Stirling’s approximation formula. So we deduce

hn

(
1,

(
k

k + 1

)2

,

(
k

k + 2

)2

, . . .

)
∼ 4k

√
πk

as n → ∞.

From the relation

hn(x1, x2, x3, . . .) = x1hn−1(x1, x2, x3, . . .) + hn(x2, x3, x4, . . .),

it follows that, as a function of n,

hn

(
1,

(
k

k + 1

)2

,

(
k

k + 2

)2

, . . .

)

is strictly increasing. Thus, Theorem 1.5 implies

Corollary 1.6. For n, k > 0,

hn

(
1,

(
k

k + 1

)2

,

(
k

k + 2

)2

, . . .

)
<

(
2k

k

)
.

We remark that this inequality was also conjectured in [25, Conjec-
ture 1].

2. Proof of Theorems

We first prove the following helpful lemma.

Lemma 2.1. For all non-negative integers k and all real numbers y,
k∑

i=0

(−1)i

[
k + 1
i + 1

]
1/2

y2i =
k∏

i=1

(i2 − y2). (3)

Proof. Consider the following relationship between the elementary symmetric
functions and the Chebyshev–Stirling numbers of the first kind [20]

ei

(
1
12

,
1
22

, . . . ,
1
k2

)
=

1
k!2

[
k + 1
i + 1

]
1/2

.
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Identity (3) follows after replacing t by − y2 in the generating function

∞∑
i=0

ei

(
1
12

,
1
22

, . . . ,
1
k2

)
ti =

k∏
i=1

(
1 +

t

i2

)
.

�

Proof of Theorem 1.1. We have

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(x − 2i)

=
∞∑

n=1

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

1
nx−2i

=
k∑

n=1

(
k∑

i=0

(−1)in2i

[
k + 1
i + 1

]
1/2

)
1
nx

+
∞∑

n=k+1

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

n2i−x.

By Lemma 2.1, the first double sum is zero and we can write

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(x − 2i)

=
1

(k+1)x

k∑
i=0

(−1)i

[
k+1
i+1

]
1/2

(k+1)2i+
∞∑

n=k+2

k∑
i=0

(−1)i

[
k+1
i+1

]
1/2

n2i−x

= (−1)k (2k + 1)!
(k + 1)x+1

+
∞∑

n=k+2

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

n2i−x. (4)

By Lemma 2.1, we have the strict inequality

A(k, x) = (−1)k
∞∑

n=k+2

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

n2i−x > 0. (5)

From (4) and (5), we have

1 < (−1)k (k + 1)x+1

(2k + 1)!

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(x − 2i) = 1 +
(k + 1)x+1

(2k + 1)!
A(k, x).

The expression (k + 1)xA(k, x) is a right Riemann sum for a positive and
decreasing function on the interval [k + 1,∞), and we have

(k + 1)xA(k, x) <

∫ ∞

k+1

(−1)k(k + 1)x
k∑

i=0

(−1)i

[
k + 1
i + 1

]
1/2

t2i−xdt.
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Next, we evaluate the integral. Assume that x > 2k + 1.∫ ∞

k+1

(−1)k(k + 1)x
k∑

i=0

(−1)i

[
k + 1
i + 1

]
1/2

t2i−xdt

=
k∑

i=0

(−1)k+i(k + 1)x

[
k + 1
i + 1

]
1/2

∫ ∞

k+1

t2i−xdt

=
k∑

i=0

(−1)k+i

[
k + 1
i + 1

]
1/2

(k + 1)x lim
b→∞

(
b2i+1−x

2i + 1 − x
− (k + 1)2i+1−x

2i + 1 − x

)

=
k∑

i=0

(−1)k+i+1

[
k + 1
i + 1

]
1/2

(k + 1)2i+1

2i + 1 − x
.

When x → ∞, the integral above converges to 0. The statement of the
theorem follows. �

Proof of Theorem 1.2. As in the proof of Theorem 1.1, using Lemma 2.1, we
have

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(x − 2i)
2x−2i

=
∞∑

n=�k/2�+1

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

(2n)2i−x

=
1

(2
⌊

k
2

⌋
+ 2)x

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

(
2
⌊

k

2

⌋
+ 2

)2i

+ (−1)kB(k, x),

where

B(k, x) = (−1)k
∞∑

n=�k/2�+2

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

(2n)2i−x.

As in the proof of Theorem 1.1, (k+1+η(k))xB(k, x) is positive and converges
to 0 when x → ∞. Moreover, one can easily check that Lemma 2.1 implies
that

1
(2

⌊
k
2

⌋
+ 2)x

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

(
2
⌊

k

2

⌋
+ 2

)2i

= (−1)k (2k + 1 + η(k))!
(k + 1 + η(k))x+1

.

Then,

1 < (−1)k (k + 1 + η(k))x+1

(2k + 1 + η(k))!

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(x − 2i)
2x−2i

= 1 +
(k + 1 + η(k))x+1

(2k + 1 + η(k))!
B(k, x),

and the proof follows. �
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3. Proof of Theorem 1.5

To prove this corollary, for k � 0, we consider the identity [25, Theorem 1.1]

hn

(
1

(k + 1)2
,

1
(k + 2)2

,
1

(k + 3)2
, . . .

)

=
2

k!2

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

(
1 − 2

22n−2i

)
ζ(2n − 2i),

that can be rewritten as

hn

(
1,

(
k + 1
k + 2

)2

,

(
k + 1
k + 3

)2

, . . .

)

=
2 · (k + 1)2n

k!2

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(2n − 2i)

− 4 · (k + 1)2n

k!2

k∑
i=0

(−1)i

[
k + 1
i + 1

]
1/2

ζ(2n − 2i)
22n−2i

.

By Theorems 1.1 and 1.2, the limiting case n → ∞ of this relation reads
as

hn

(
1,

(
k + 1
k + 2

)2

,

(
k + 1
k + 3

)2

, . . .

)

≈ (−1)k 2 · (k + 1)2n

k!2
· (2k + 1)!
(k + 1)2n+1

− (−1)k 4 · (k + 1)2n

k!2

· (2k + 1 + η(k))!
(k + 1 + η(k))2n+1

= (−1)k

(
2k + 2
k + 1

)
·
(

1 − 2 · (k + 1)2n+1

(2k + 1)!
· (2k + 1 + η(k))!
(k + 1 + η(k))2n+1

)
.

We have

lim
n→∞

(k + 1)2n+1

(2k + 1)!
· (2k + 1 + η(k))!
(k + 1 + η(k))2n+1

=

{
0 if k is even
1 if k is odd.

Thus,

hn

(
1,

(
k + 1
k + 2

)2

,

(
k + 1
k + 3

)2

, . . .

)
∼

(
2k + 2
k + 1

)
.
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Appendix: An Alternative Proof of Theorem 1.5

The following alternative proof was suggested by Gergő Nemes. Let k be a
fixed positive integer and suppose that |z| < 1. Then

∞∑
n=0

hn

(
1,

(
k

k + 1

)2

,

(
k

k + 2

)2

,

(
k

k + 3

)2

, . . .

)
z2n

=
∞∏

n=1

1

1 −
(

k

k + n − 1

)2

z2

=
∞∏

n=1

(k + n − 1)2

(k + n − 1)2 − (kz)2

=
∞∏

n=0

(k + n)2

((k + kz) + n)((k − kz) + n)

= lim
N→+∞

N∏
n=0

(k + n)2

((k + kz) + n)((k − kz) + n)

= lim
N→+∞

N !Nk+kz

N∏
n=0

((k + kz) + n)

N !Nk−kz

N∏
n=0

((k − kz) + n)

N !Nk

N∏
n=0

(k + n)

N !Nk

N∏
n=0

(k + n)

=
Γ(k + kz)Γ(k − kz)

Γ(k)2
=: f(z).

The function f(z) has poles at the points z = ±
(
1 +

n

k

)
for any non-negative

integer n. We remove the poles at z = ± 1 by writing

f(z) −
(

2k

k

)
1

1 − z2
.

This function is analytic when |z| < 1+
1
k

, which implies that hn−
(

2k

k

)
→ 0

as n → +∞.
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