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Abstract

The restricted partitions in which the largest part is less than or equal to

N and the number of parts is less than or equal to k were investigated

by George E. Andrews in his book [1]. In this project, we aim to extend

these partitions to the partitions into parts of two kinds. To this end, we

will explore the relationships between Gauss polynomials and symmetric

elemental polynomials to obtain new combinatorial identities.
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Chapter 1

Introduction

In the last year, we continued to study applications of mathematical analysis in number

theory and we obtained some nonnegative results related to Riemann’s zeta function

[5, 8, 19, 20, 23], Euler’s partition function [3, 7, 9, 18, 21, 22, 25], Lambert series

and important functions from multiplicative number theory [6, 16, 17, 24] (the Möbius

function µ(n), Euler’s totient ϕ(n), Jordan’s totient Jk(n), Liouville’s function λ(n),

the von Mangoldt function Λ(n) and the divisor function σx(n)). We remark that

some of these results are already cited by S. Chern [10, 11], M.W. Coffey [12], S. Hu

and M.-S. Kim [13], and M.D. Schmidt [26, 27]. Our goal is to continue exploring

the applications of mathematical analysis in number theory to discover and prove new

results.

In number theory and combinatorics, a partition of a positive integer n is a non-

increasing sequence of positive integers whose sum is n. Two sums that differ only in

the order of their terms are considered the same partition. The number of partitions

of n is given by the partition function p(n). For example, p(4) = 5 because the five

partitions of 4 are:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 + 1. (1.1)

The generating function for p(n) has the following infinite product form:

∞∑
n=0

p(n)qn =
1

(q; q)∞
,
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where

(a; q)n =

{
1, for n = 0,

(1− a)(1− aq)(1− aq2) · · · (1− aqn−1), for n > 0

is the q-shifted factorial and

(a; q)∞ = lim
n→∞

(a; q)n.

Because the infinite product (a; q)∞ diverges when a 6= 0 and |q| > 1, whenever (a; q)∞

appears in a formula, we shall assume that |q| < 1.

Partitions of an integer play an important role in the solutions of many combina-

torial problems and we refer the reader to [1, 2] for basic concepts in partition theory.

The function p(n) is often referred to as the number of unrestricted partitions of n, to

make clear that no restrictions are imposed upon the parts of n. A very interesting

part of the theory of partitions concerns restricted partitions. Restricted partitions are

partitions in which some kind of conditions is imposed upon the parts. A restricted

partition function gives the number of restricted partitions of n. This is the counterpart

of the unrestricted partition function p(n).

For any positive integers k, n and N , Andrews [1] examined the partitions of n into

at most k parts, each part less than or equal to N and remarked few results for the

partition function p(N, k, n) which denotes the number of these restricted partitions

(see for example [1, Eq. (3.2.6), Theorems 3.1 and 3.10]). The generating function of

p(N, k, n) is given by
Nk∑
n=0

p(N, k, n)qn =

[
N + k
N

]
,

where [
n
k

]
=

[
n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k

are the q-binomial coefficients or the Gaussian polynomials. Whenever the base of a

q-binomial coefficient is just q it will be omitted. These polynomials were first studied

by Gauss.
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In this paper, motivated by these results, we invoke the Gaussian polynomials to

examine some properties of the restricted partitions into parts of two kinds. Some

classical Gaussian polynomial identities [2, pp. 71-74] as

n∑
j=0

(−1)j
[
n
j

]
=

{
0, if n is odd

(q; q2)bn/2c, if n is even

or the q-analogues of Vandermonde’s convolution[
m
k

]
=

k∑
j=0

[
n
j

] [
m− n
k − j

]
q(m−n−k+j)j

allow us to derive new formulas involving partition function p(N, k, n).
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Chapter 2

A connection with restricted

partitions into distinct odd parts

We consider the partitions of n into distinct odd parts, each parts less than or equal

to N . The number of these partitions is denoted in this paper by Qodd(N, n). For

example, Qodd(11, 16) = 3 because the three partitions in question are:

11 + 5 = 9 + 7 = 7 + 5 + 3 + 1.

We have the following result.

Theorem 2.1. For N, k, n > 0,

N∑
k=0

(−1)n−kp (N − k, k, n) =

0, if N is odd

Qodd(N, n), if N is even.

Proof. Recall [14] that the kth elementary symmetric polynomial ek(x1, x2, . . . , xn) is

given by

ek(x1, x2, . . . , xn) =
∑

16i1<i2<...<ik6n

xi1xi2 . . . xik for k = 1, 2, . . . , n.

By convention, we set e0(x1, . . . , xn) = 1 and ek(x1, . . . , xn) = 0 for k < 0 or k > n.

The elementary symmetric polynomials are characterized by the following identity of
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formal power series in z:
n∑

k=0

ek(x1, x2, . . . , xn)zk =
n∏

k=1

(1 + xkz).

It is clear that, (−zq; q)N is the generating function for the elementary symmetric

functions of the numbers q, q2, . . . , qN , i.e.,
∞∑
k=0

ek(q, q2, . . . , qN)zk = (−zq; q)N .

By this relation, with q replaced by q2 and z replaced by q−1, we obtain

(−q; q2)N =
N∑
k=0

ek
(
q, q3, . . . , q2N−1

)
=

N∑
k=0

∑
16i1<···<ik6N

q(2i1−1)+···+(2ik−1)

=
N2∑
k=0

Qodd(2N − 1, n)qn.

Due to Gauss [2, pp. 71-72, Theorem 10], we have the following identity

N∑
k=0

(−1)k

[
N

k

]
=

0, if N is odd

(q; q2)bN/2c, if N is even.

On the other hand, considering the generating function of p(N, k, n), we can write

N∑
k=0

(−1)k

[
N

k

]
=

N∑
k=0

N ·k−k2∑
n=0

(−1)kp (N − k, k, n) qn

=

bN/2c2∑
n=0

N∑
k=0

(−1)kp (N − k, k, n) qn.

Thus we deduce

bN/2c2∑
n=0

N∑
k=0

(−1)kP (N − k, k, n) qn

=


0, if N is odd
bN/2c2∑
n=0

(−1)nQodd(2bN/2c − 1, n)qn, if N is even.

Equating the coefficients of qn in this identity gives the result.
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Following the notation in Andrews’s book [1], we denote by Q(N, k, n) the number

of ways in which the integer n can be expressed as a sum of exactly k distinct positive

integers less than or equal to N , without regard to order. For example, the integer

n = 12 can be expressed as a sum of k = 3 distinct positive integers less than or equal

to N = 7 in the following five ways:

7 + 4 + 1 = 7 + 3 + 2 = 6 + 5 + 1 = 6 + 4 + 2 = 5 + 4 + 3.

Therefore we have Q(7, 3, 12) = 5.

Corollary 2.1. For N, k, n > 0,

N∑
k=0

(−1)n−kQ

(
N, k, n+

(
k + 1

2

))
=

0, if N is odd

Qodd(N, n), if N is even.

Proof. The proof follow easily from Theorem 2.1 considering a known relationship

between p(N, k, n) and Q(N, k, n):

Q(N, k, n) = p

(
N − k, k, n−

(
k + 1

2

))
.

This identity has a simple combinatorial proof. We start from a partitions of n into

exactly k distinct parts, each part less than or equal to N . Then we subtract a staircase

of size k, i.e., subtract k to the largest part, k − 1 to the second largest one, etc., and

1 to the smallest part. The result is a partition of n− k(k+ 1)/2 into at most k parts,

each part less than or equal to N − k.
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Chapter 3

Restricted partitions into parts of

two kinds

Assume there are positive integers of two kinds: a and ā. We denote by p̄(N1, N2, k1, k2, n)

the number of partitions of n into parts of two kinds with at most k1 parts of the first

kind, each parts less than or equal to N1 and at most k2 parts of the second kind,

each parts less than or equal to N2. For example, p̄(3, 2, 2, 1, 4) = 6 because the six

partitions in question are:

3 + 1, 3 + 1̄, 2 + 2, 2 + 2̄, 2 + 1 + 1̄, 2̄ + 1 + 1.

Elementary techniques in the theory of partitions and [1, Theorem 3.10] give the fol-

lowing generating function for p̄(N1, N2, k1, k2, n),

N1k1+N2k2∑
n=0

p̄(N1, N2, k1, k2, n)qn =

[
N1 + k1
N1

] [
N2 + k2
N2

]
. (3.1)

The recurrence relations[
N
k

]
= qk

[
N − 1
k

]
+

[
N − 1
k − 1

]
(3.2)

and [
N
k

]
=

[
N − 1
k

]
+ qN−k

[
N − 1
k − 1

]
(3.3)

for the Gaussian polynomials can be used to derive recurrence relations for the partition

function p̄(N1, N2, k1, k2, n).
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Theorem 3.1. For N1, N2, k1, k2, n > 0,

1. p̄(N1, N2, k1, k2, n)− p̄(N1 − 1, N2 − 1, k1, k2, n− k1 − k2)

−p̄(N1 − 1, N2, k1, k2 − 1, n− k1)− p̄(N1, N2 − 1, k1 − 1, k2, n− k2)

−p̄(N1, N2, k1 − 1, k2 − 1, n) = 0;

2. p̄(N1, N2, k1, k2, n)− p̄(N1 − 1, N2 − 1, k1, k2, n)

−p̄(N1 − 1, N2, k1, k2 − 1, n−N2)− p̄(N1, N2 − 1, k1 − 1, k2, n−N1)

−p̄(N1, N2, k1 − 1, k2 − 1, n−N1 −N2) = 0;

3. p̄(N1, N2, k1, k2, n)− p̄(N1 − 1, N2 − 1, k1, k2, n− k1)

−p̄(N1 − 1, N2, k1, k2 − 1, n− k1 −N2)− p̄(N1, N2 − 1, k1 − 1, k2, n)

−p̄(N1, N2, k1 − 1, k2 − 1, n−N2) = 0.

Proof. By (3.2), we have[
N1 + k1

k1

][
N2 + k2

k2

]

=

(
qk1

[
N1 − 1 + k1

k1

]
+

[
N1 + k1 − 1

k1 − 1

])(
qk2

[
N2 − 1 + k2

k2

]
+

[
N2 + k2 − 1

k2 − 1

])

= qk1+k2

[
N1 − 1 + k1

k1

][
N2 − 1 + k2

k2

]
+ qk1

[
N1 − 1 + k1

k1

][
N2 + k2 − 1

k2 − 1

]

+ qk2

[
N1 + k1 − 1

k1 − 1

][
N2 − 1 + k2

k2

]
+

[
N1 + k1 − 1

k1 − 1

][
N2 + k2 − 1

k2 − 1

]
.

This allows us to write

N1k1+N2k2∑
n=0

p̄(N1, N2, k1, k2, n)qn

=

(N1−1)k1+(N2−1)k2∑
n=0

p̄(N1 − 1, N2 − 1, k1, k2, n)qn+k1+k2
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+

(N1−1)k1+N2(k2−1)∑
n=0

p̄(N1 − 1, N2, k1, k2 − 1, n)qn+k1

+

N1(k1−1)+(N2−1)k2∑
n=0

p̄(N1, N2 − 1, k1 − 1, k2, n)qn+k2

+

N1(k1−1)+N2(k2−1)∑
n=0

p̄(N1, N2, k1 − 1, k2 − 1, n)qn.

The proof of the first relation follows equating the coefficient of qn in this identity.

Similarly, considering (3.3) we obtain the second recurrence relation. The last relation

follows combining (3.2) and (3.3).

By these results, with k1 or k2 replaced by 0, we obtain [1, Eq. (3.2.6)]. The

following result is similar to [1, Theorem 3.10] and implies the self-reciprocal and

unimodal properties of the generating function of p̄(N1, N2, k1, k2, n). Recall that the

reciprocal f ∗(x) of a polynomial

f(x) = a0 + a1x+ · · ·+ anx
n

is defined by

f ∗(x) = xnf(x−1).

The polynomial f is called self-reciprocal if it coincides with its reciprocal, i.e., ai = an−i

for each i = 0, 2, . . . , n. The polynomial f is called unimodal if there exist m such that

ai − ai−1 > 0 for 0 < i 6 m

and

ai − ai−1 6 0 for m < i 6 n.

Theorem 3.2. For all N1, N2, k, n > 0,

p̄(N1, N2, k1, k2, n) = p̄(k1, N2, N1, k2, n) = p̄(N1, k2, k1, N2, n) = p̄(k1, k2, N1, N2, n);

p̄(N1, N2, k1, k2, n) = p̄(N1, N2, k1, k2, N1k1 +N2k2 − n);

p̄(N1, N2, k1, k2, n)− p̄(N1, N2, k1, k2, n− 1) > 0 for 0 < n 6 (N1k1 +N2k2)/2.
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Proof. The first equation follows from the fact that[
N + k

N

]

is symmetric in N and k, i.e.,[
N1 + k1

N1

][
N2 + k2

N2

]
=

[
k1 +N1

k1

][
N2 + k2

N2

]

=

[
N1 + k1

N1

][
k2 +N2

k2

]

=

[
k1 +N1

k1

][
k2 +N2

k2

]
.

To prove the last two relations, we invoked the fact that[
N + k

N

]

is a self-reciprocal and unimodal polynomials with nonnegative coefficients. Therefore

by [1, Theorem 3.9], we deduce that[
N1 + k1

N1

][
N2 + k2

N2

]

is a self-reciprocal and unimodal polynomials of the degree N1k1 +N2k2.

The partition functions p(N, k, n), Qodd(N, n) and p̄(N1, N2, k1, k2, n) are related as

follows.

Theorem 3.3. For N, k, n > 0,

N∑
j=0

(−1)N−j p̄(N − j, j, j + k, k, n)

=


0, if N is odd
n∑

j=0

(−1)n−jp(N, k, j)Qodd (N/2, n− j), if N is even.
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Proof. To prove this relation, we consider the identity [4, Eq. (5.2)]

N∑
j=k

(−1)j

[
N

j

][
j

k

]
=


0, if N − k is odd

(−1)N

N
k

 (q; q2)(N−k)/2, if N − k is even.

We have

N∑
j=k

(−1)j

[
N

j

][
j

k

]
=

N∑
j=k

(N−j)j+(j−k)k∑
n=0

(−1)j p̄(N − j, j − k, j, k, n)qn

=

(N−k)(N+3k)/4∑
n=0

(
N∑
j=k

(−1)j p̄(N − j, j − k, j, k, n)

)
qn.

For N − k even, we can write[
N

k

]
(q; q2)(N−k)/2

=

(
Nk−k2∑
n=0

p(N − k, k, n)qn

)(n−k)2/4∑
n=0

(−1)nQodd(N, n)qn


=

(N−k)(N+3k)/4∑
n=0

(
n∑

j=0

(−1)n−jp(N − k, k, j)Qodd

(
N − k

2
, n− j

))
qn.

The proof follows easily replacing N by N + k.

By Theorem 3.3, we derive the following relation.

Corollary 3.1. For N, k, n > 0,

2N∑
j=0

(−1)j p̄(2N − j, j, j + k, k, n)

=
n∑

j=0

(−1)n−jQ

(
2N + k, k, j +

(
k + 1

2

))
Qodd (N, n− j) .
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Chapter 4

Some relations connected to

elementary symmetric polynomials

In this section, we invoke some properties of the elementary symmetric polynomials to

give another relations involving the partition function p̄(N1, N2, k1, k2, n).

Theorem 4.1. For N, k, n > 0,

∞∑
j=0

(−1)j p̄

(
N − j,N − 1, j, k − j, n−

(
j

2

))
= δk,0,

where δi,j is the Kronecker delta.

Proof. To prove this identity, we consider the fundamental relation between the ele-

mentary symmetric polynomials and the complete homogeneous ones:

k∑
j=0

(−1)kej(x1, x2, . . . , xn)hk−j(x1, x2, . . . , xn) = δk,0.

Taking into account that

ek(1, q, . . . , qN−1) = q(
k
2)

[
N

k

]

and

hk(1, q, . . . , qN−1) =

[
N − 1 + k

k

]
,

12



we obtain the identity

k∑
j=0

(−1)jq(
j
2)

[
N

j

][
N − 1 + k − j

k − j

]
= δk,0. (4.1)

We see that the coefficient of q0 is δk,0 and for j > 0 the coefficient of qj is null. On

the other hand, the generating function for p̄(N1, N2, k1, k2, n) allows us to write:

k∑
j=0

(−1)jq(
j
2)

[
N

j

][
N − 1 + k − j

k − j

]

=
k∑

j=0

(N−j)j+(N−1)(k−j)∑
n=0

(−1)j p̄(N − j,N − 1, j, k − j, n)qn+(j
2)

=
k∑

j=0

(N−1)k−(j
2)∑

n=(j
2)

(−1)j p̄

(
N − j,N − 1, j, k − j, n−

(
j

2

))
qn

=

(N−1)k∑
n=0

(
N∑
j=0

(−1)j p̄

(
N − j,N − 1, j, k − j, n−

(
j

2

)))
qn.

This concludes the proof.

Theorem 4.2. For N, k, n > 0,

p̄(N,N, k, k, n) + 2

b
√
nc∑

j=1

(−1)j p̄(N − j,N + j, k + j, k − j, n− j2)

=

0, if n is odd

p(N, k, n/2), if n is even.

Proof. According to [15, Corollary 1.3], we have

ek(x21, x
2
2, . . . , x

2
n) =

k∑
j=−k

(−1)jek+j(x1, x2, . . . , xn)ek−j(x1, x2, . . . , xn).

By this identity, with xj replaced by qj−1, we derive the identity[
N

k

]
q2

=

[
N

k

]2
q

+ 2
k∑

j=1

(−1)jqj
2

[
N

k + j

]
q

[
N

k − j

]
q

. (4.2)
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We have [
N

k

]
q2

=

(N−k)k∑
n=0

p(N − k, k, n)q2n

and [
N

k

]2
q

+ 2
k∑

j=1

(−1)jqj
2

[
N

k + j

]
q

[
N

k − j

]
q

=

2k(N−k)∑
n=0

p̄(N − k,N − k, k, k, n)qn

+2
k∑

j=1

2Nk−2k2−2j2∑
n=0

(−1)j p̄(N − k − j,N − k + j, k + j, k − j, n)qn+j2

=

2k(N−k)∑
n=0

p̄(N − k,N − k, k, k, n)qn

+2
k∑

j=1

2Nk−2k2−j2∑
n=j2

(−1)j p̄(N − k − j,N − k + j, k + j, k − j, n− j2)qn

=

2k(N−k)∑
n=0

p̄(N − k,N − k, k, k, n)qn

+2

2k(N−k)−1∑
n=1

b
√
nc∑

j=1

(−1)j p̄(N − k − j,N − k + j, k + j, k − j, n− j2)qn.

So we deduce that

p̄(N − k,N − k, k, k, n) + 2

b
√
nc∑

j=1

(−1)j p̄(N − k − j,N − k + j, k + j, k − j, n− j2)

=

0, if n is odd

p(N − k, k, n/2), if n is even.

Replacing N by N + k in this identity, we arrive at our result.

Two congruence identities can be easily obtained as consequences of Theorem 4.2.
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Corollary 4.1. For N, k, n > 0,

1. p̄(N,N, k, k, 2n+ 1) ≡ 0 (mod 2);

2. p̄(N,N, k, k, 2n) ≡ p(N, k, n) (mod 2).

We remark the following special case of the second congruence identity of this

corollary.

Corollary 4.2. For n > 0,

p̄(n, n, n, n, 2n) ≡ p(n) (mod 2).

The case N = k = n of Theorems 4.2 can be written as follows.

Corollary 4.3. For n > 0,

∞∑
j=−∞

(−1)j p̄(n− j2) =

0, if n is odd

p(n/2), if n is even,

where p̄(n) denotes the number of partitions of n into parts of two kinds.

By this corollary it is clear that p̄(2n + 1) is even. On the other hand, p̄(2n) and

p(n) have the same parity.
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Chapter 5

Partition formulas connected to

q-Vandermonde’s convolutions

Using the standard notation for the Gaussian polynomials, the q-Vandermonde identi-

ties state that: [
m
k

]
=

k∑
j=0

[
n
j

] [
m− n
k − j

]
q(n−j)(k−j) (5.1)

and [
m
k

]
=

k∑
j=0

[
n
j

] [
m− n
k − j

]
q(m−n−k+j)j. (5.2)

In this section, we use these identities to prove that the partition function p(N, k, n)

can be expressed in terms of the partition function p̄(N1, N2, k1, k2, n) in various ways.

Theorem 5.1. For N1, N2, k, n > 0,

1. p(N1 +N2, k, n) =
k∑

j=0

p̄(N1 + j,N2 − j, k − j, j, n− (N2 − j)(k − j));

2. p(N1 +N2, k, n) =
k∑

j=0

p̄(N1 + j,N2 − j, k − j, j, n− (N1 + j)j).

Proof. Taking into account the first q-Vandermonde convolution (5.1), we can write

(N1+N2)k∑
n=0

p(N1 +N2, k, n)qn

16



=

[
N1 +N2 + k

k

]

=
k∑

j=0

[
N2

j

][
N1 + k

k − j

]
q(N2−j)(k−j)

=
k∑

j=0

(N1+j)(k−j)+(N2−j)j∑
n=0

p̄(N1 + j,N2 − j, k − j, j, n)qn+(N2−j)(k−j)

=
k∑

j=0

(N1+N2)k−(N1+j)j∑
n=(N2−j)(k−j)

p̄(N1 + j,N2 − j, k − j, j, n− (N2 − j)(k − j))qn

=

(N1+N2)k∑
n=0

k∑
j=0

p̄(N1 + j,N2 − j, k − j, j, n− (N2 − j)(k − j))qn.

The first identity follows equating the coefficient of qn in this relation. Similarly,

considering the q-Vandermonde convolution (5.2), we derive the second identity.

Theorem 5.2. For all N, k, n > 0,

1. p(N, k, n) =
k∑

j=0

p̄(N − j, k − j, j, j, n− (N − j)(k − j));

2. p(N, k, n) =
k∑

j=0

p̄(N − j, k − j, j, j, n− j2).

Proof. Taking into account the following specialization of the q-Vandermonde convo-

lutions (5.1) and (5.2), [
N + k

k

]
=

k∑
j=0

[
N

j

][
k

j

]
q(N−j)(k−j) (5.3)

and [
N + k

k

]
=

k∑
j=0

[
N

j

][
k

j

]
qj

2

, (5.4)

the proof is similar to the proof of Theorem 5.1.

As a consequence of these results, we remark the following formula for the partition

function p(n)

17



Corollary 5.1. For n > 0,

p(n) =

b
√
nc∑

j=1

p̄(j, n− j2),

where p̄(k, n) denotes the number of partitions of n into parts of two kinds with at most

k parts of each kind.

Proof. The identity follows easily by Theorem 5.2 replacing N and k by n.

We notice that the q-series identity

1

(q; q)∞
=
∞∑
n=0

qn
2

(q; q)2n

can be easily deduced from Corollary 5.1 and vice-versa. On the other hand, this

corollary can be used to derive the following congruence identities.

Corollary 5.2. For n > 0,

1.
∞∑
k=1

p(2k, n− 2k2) ≡ p(2n) mod 2,

2.
∞∑
k=1

p(2k − 1, n− 2k2 + 2k) ≡ p(2n+ 1) mod 2,

where p(k, n) denotes the number of partitions of n with at most k parts.

Proof. Taking into account the generating functions of p(N, k, n) and p̄(N1, N2, k1, k2, n),

we obtain the following convolution

p̄(N1, N2, k1, k2, n) =
n∑

j=0

p(N1, k1, j)p(N2, k2, n− j).

Thus we derive the identity

p̄(k, n) =
n∑

j=0

p(k, j)p(k, n− j).

The case n even of this identity can be written as

p̄(k, 2n) = p(k, n) + 2
n−1∑
j=0

p(k, j)p(k, 2n− j).

18



Similarly, the case n odd read as

p̄(k, 2n+ 1) = 2
n∑

j=0

p(k, j)p(k, 2n+ 1− j).

So we deduce that p̄(k, 2n) and p(k, n) have the same parity and p̄(k, 2n + 1) is even.

The proof follows easily considering Corollary 5.1.

Relationships provided by Theorems 5.1 and 5.2 can be seen as combinatorial in-

terpretations of q-Vandermonde’s identities.
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Chapter 6

Concluding remarks

The restricted partitions in which the largest part is less than or equal to N and the

number of parts is less than or equal to k have been extended in this paper to the

partitions of n into parts of two kinds with at most k1 parts of the first kind, each

parts less than or equal to N1 and at most k2 parts of the second kind, each parts less

than or equal to N2. Some partitions formulas have been derived in this way.

Finally, we denote by Q̄(N1, N2, k1, k2, n) the number of partitions of n into distinct

parts of two kinds with exactly k1 parts of the first kind, each parts less than or equal

to N1 and exactly k2 parts of the second kind, each parts less than or equal to N2. The

generating function of Q(N, k, n) and elementary techniques in the theory of partitions

give the following generating function for Q̄(N1, N2, k1, k2, n),

∞∑
n=0

Q̄(N1, N2, k1, k2, n)qn = q(
k1+1

2 )+(k2+1
2 )
[
N1

k1

] [
N2

k2

]
.

We have the following bijection between restricted partitions into parts of two kinds.

Theorem 6.1. For N1, N2, k1, k2, n > 0,

Q̄(N1, N2, k1, k2, n) = p̄

(
N1 − k1, N2 − k2, k1, k2, n−

(
k1 + 1

2

)
−
(
k2 + 1

2

))
.

Proof. We start from a partitions of n into distinct parts of two kinds with exactly k1

parts of the first kind, each parts less than or equal to N1 and exactly k2 parts of the

second kind, each parts less than or equal to N2. We subtract a staircase of size k1,

i.e., subtract k1 to the largest part of the first kind, k1 − 1 to the second largest one,
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etc., and 1 to the smallest part of the first kind. Then we subtract a staircase of size

k2, i.e., subtract k2 to the largest part of the second kind, k2 − 1 to the second largest

one, etc., and 1 to the smallest part of the second kind. The result is a partition of

n − k1(k1 + 1)/2 − k2(k2 + 1)/2 into parts of two kinds, with at most k1 parts of the

first kind, each part less than or equal to N1 − k1 and with at most k2 parts of the

second kind, each part less than or equal to N2 − k2.

It is clear that the results provided in the previous sections for the partition function

p̄(N1, N2, k1, k2, n) can be rewritten in terms of the partition function Q̄(N1, N2, k1, k2, n).
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