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Abstract
We review the coupled channels approach of α transitions to excited states.
The α-decaying states are identified as narrow outgoing Gamow resonances in
an α-daughter potential. The real part of the eigenvalue corresponds to the Q-
value, while the imaginary part determines the half of the total α-decay width.
We first review the calculations describing transitions to rotational states
treated by the rigid rotator model, in even–even, odd-mass and odd–odd
nuclei. It is found that the semiclassical method overestimates the branching
ratios to excited 4+ for some even–even α-emitters and fails in explaining the
unexpected inversion of branching ratios of some odd-mass nuclei, while the
coupled-channels results show good agreement with the experimental data.
Then, we review the coupled channels method for α-transitions to 2+ vibra-
tional and transitional states. We present the results of the Coherent State
Model that describes in a unified way the spectra of vibrational, transitional
and rotational nuclei. We evidence general features of the α-decay fine
structure, namely the linear dependence between α-intensities and excitation
energy, the linear correlation between the strength of the α-core interaction
and spectroscopic factor, and the inverse correlation between the nuclear
collectivity, given by electromagnetic transitions, and α-clustering.
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1. Introduction

The simplest phenomenological description of α-decay half-lives uses the picture of a pre-
formed α-cluster penetrating through the Coulomb barrier, proposed in 1928 by [1, 2]. This
picture is based on the fact that the α-particle is the most bound nuclear system and for this
reason it is widely accepted that it is born with some probability on the nuclear surface, where
the nuclear density has a smaller value. A more sophisticated R-matrix theory calculates this
probability, called spectroscopic factor, in terms of single particle proton plus neutron orbitals
[3–7]. The α-transitions to excited states are very sensitive to nuclear structure details. They
are used as an important tool to investigate the structure of low-lying states [8]. Along with
the development of experimental facilities and the enhancement of experimental sensitivities,
α-decay spectra have been measured with improved accuracy. Many deformed α emitters
show a line spectrum of α groups corresponding to α-transitions to different daughter states,
which is confirmed by the fact that the energy differences between various α groups fit with γ

rays [9, 10]. This phenomenon is called the α-decay fine structure (with short-range α

particles). It was first discovered by Rosenblum in 1929 [11]. Since then, the field of
experiments that probe these α-transitions and their connection to the structure of the parent
nuclei has flourished. For example, [12–28] deal mainly with the α-spectroscopy of medium-
mass nuclei, with particular interest to the region around the Z= 82 shell closure. Exper-
imental investigations of the α-emitters in the actinides region can be consulted in [29–38].

Attempts to explain the fine structure of the α-emission spectrum have been made soon
after its discovery. In one of these attempts, Rasmussen and Segall performed the first
numerical calculations of the α-decay fine structure by solving a set of coupled differential
equations in 1956 [39]. In the last decade, the new challenge in α-decay studies is to interpret
the α-decay fine structure observed in heavy deformed nuclei. The logic of theoretical
investigations followed a path from semiclassical to coupled-channel calculations and from
even–even, to odd-mass, and then to odd–odd nuclei. In addition, it should be particularly
noted that sufficient knowledge of the α-decay fine structure in heavy nuclei is also helpful
for future researches on superheavy nuclei [40–45], because α-decay in the superheavy mass
region presents a powerful and precise tool to probe nuclear structure properties.

The α-transitions to the excited-state rotational band occur in vibrational or transitional
nuclei and the branching ratio (b.r.) is quite low [46, 47]. The α-decay fine structure is clear-
cut in even–even nuclei, generally from ground states (g.s.) 0+ of parent nuclei to the low-
lying members of g.s. rotational bands in daughter nuclei (i.e., 0+, 2+, 4+, 6+,K). Fur-
thermore, each member of the rotational band exhibits one single channel and the b.r. shows a
clear decrease as one proceeds to the higher-lying members of the band. The situation for the
case of odd-A and odd–odd emitters is much more complicated owing to unpaired nucleons.
There are various rotational bands built on s.p. states or two-quasiparticle states. Also, the
structure of parent states is generally different from that of the g.s. rotational band in daughter
nuclei. The α-decay fine structure depends on both the structure differences between parent
and daughter states and the decay energy of α-transitions. The structure differences accom-
pany the decay with an additional centrifugal barrier. More importantly, they bring in some
hindrances to the α-cluster formation. In general, the smaller the structure difference between
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the parent and daughter states, the larger the probability of an α-transition between them. On
the other hand, the final daughter states exhibit different excitation energies, which corre-
spond to different decay energies. As one would expect, the larger the decay energy, the
larger the probability of the corresponding α-transition. The interplay between these two
aspects results in a line spectrum of α groups.

The main aim of this review is to present methods and results concerning the description
of α-transitions to excited states in even–even and odd-mass nuclei in terms of the coupled
channels formalism, by using various nuclear structure models.

2. General formalism

2.1. Equations

As already we mentioned, it is widely accepted that the α-particle is born on the nuclear
surface, where the nuclear density has a smaller value, with some probability called spec-
troscopic factor [8]. Starting from this region it moves in the resulting nuclear plus Coulomb
field of the daughter nucleus. The most general α-decay transition can be written

P I D I ℓ , 2.1P a +( ) ( ) ( ) ( )

in terms of
IP denoting the spin/parity of the initial state in the parent nucleus (P),
I the spin/parity of the final state in the daughter nucleus (D) and
ℓ the angular momentum of the emitted α-particle.
The wave function of the system can be written as a multipole expansion [8] with the

total spin of the initial state

f R

R
RR, , . 2.2I M D

c I ℓ

c
I M
c

D
,

P P P P
åx xY =

=
( )

( )
( ˆ) ( )

( )

( )

The radial function fc(R) describes the α-daughter radial motion, where the index c denotes
the emission channel c I ℓ,º ( ). The ‘clustered’ ansatz of the wave function is expressed by
the core-angular harmonics

R Y R, , 2.3I M
c

D I D ℓ I MP P P P
 x x= F Ä( ˆ) [ ( ) ( ˆ)] ( )( )

where the symbol ⊗ denotes the standard angular momentum coupling between the daughter
(core) internal wave function IM DxF ( ), depending on the daughter degrees of freedom Dx , and
the standard spherical harmonic Y Rℓm ( ˆ), describing the relative angular motion of the α-
daughter system. These core-angular harmonics satisfy the orthonormality condition

. 2.4I M
c

I M
c

ccP P P P
  d=¢

¢⟨ ∣ ⟩ ( )( ) ( )

The α-daughter dynamics is described by the stationary Schrödinger equation

H QR R, , , 2.5I M D I M DP P P P
x xY = Ya( ) ( ) ( )

where Qα is relative energy of the emitted α-particle, called the Q-value of the decay process.
Due to the fact that all measured decay widths are by many orders of magnitude smaller than
the corresponding Q-values, the stationarity approximation is a very good assumption. Hence,
an α-decaying state is identified with a narrow resonant solution that contains only outgoing
components. The Hamiltonian
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H H V R
2

, , 2.6R D D D

2
2

m
x x= -  + +( ) ( ) ( )

contains the kinetic operator, depending on the reduced mass m A A4 4N D Dm = +( ), a term
describing the dynamics of the nuclear core HD Dx( )

H E , 2.7D IM D c IM DI I
x xF = F( ) ( ) ( )

and the α-core interaction, which we split into spherical and deformed parts

V V R VR R, , , . 2.8D D d D0x x x= +( ) ( ) ( ) ( )

By using the orthonormality of the core-angular harmonics (2.4) in the superposition (2.2),
one obtains in a standard way the coupled system of differential equations for radial
components [8]
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where the coupling matrix is given by
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in terms of the channel reduced radius

R
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. 2.11c c c
c

2
r k k

m
= =

-a( ) ( )

Let us mention that at large distances, where the field becomes spherical (V 0d  ) and purely
Coulombian, the system of equations has a simple form

ℓ ℓ
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The solution in each channel c has the following asymptotic expression

f N H, , , 2.13c c c c ℓ c cc r c r +( ) ( ) ( )( )

in terms of the outgoing Coulomb–Hankel spherical wave, depending on the Coulomb–
Sommerfeld parameter

Z Z

v

Z Z

Q E

2 2
, 2.14c

D

c

D

c
c = ~

-
a a

a
( )

and reduced radius (2.11). By using the continuity equation one obtains the total decay width
as a sum of partial widths [8]

v f R v Nlim , 2.15
c

c
c

c
R

c
c

c c
2 2 å å åG = G = =

¥
∣ ( )∣ ∣ ∣ ( )

in terms of the center of mass velocity at infinity for each α-daughter channel vc
c= k

m
. Each

partial width can be formally rewritten in a factorized form at some radius R

R P R2 , 2.16c c c
2gG = ( ) ( ) ( )
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in terms of the so-called reduced width and penetrability

R
R
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Here F ,ℓ c cc r( ) and G ,ℓ c cc r( ) are the standard regular and irregular spherical Coulomb
functions, depending on Coulomb parameter χc and reduced radius ρc=κcR in the channel
c. For a large Coulomb barrier with respect to the Q-value, as it is the case for the α-decay,
the regular function practically vanishes inside the barrier. The product in equation (2.16)
does not depend upon the radius, but this representation allows us to estimate the decay width
by using the wave function on the nuclear surface.

In the case of an initial even–even emitter in the ground state the initial spin IP=0 and
therefore the α-particle rotates in the opposite direction with respect the daughter motion with
J=ℓ, as it is depicted in figure 1(a). The core-angular harmonics are given by R,c

D0 x( ˆ)( ) ,
with c=J. For transitions from odd-mass nuclei, if the state of the unpaired nucleon remains
unchanged during the decay process, then the transition is known as favored. Otherwise, it is
called unfavored.

In the case of an odd-mass daughter nucleus its spin I is given by the coupling between
the spin of the even–even core J and the single particle (s.p.) spin j. The wave function of the
daughter nucleus is given by a particle-core ansatz

Xr r, , 2.18IM D
J

I
J j

J D j IM
,åx j x yF = Ä( ) [ ( ) ( )] ( )( )

where jJ(ξD) is the wave function of the even–even core and ψjm(r) are s.p. orbitals. The
mixing coefficients are found by diagonalizing a quadrupole–quadrupole (QQ) interaction
between the even–even core and the odd particle. A more general ansatz assumes a
quasiparticle-core coupling. In odd–odd nuclei, the s.p. orbital is replaced by a proton–
neutron wave function. The spin of the emitted α-particle has several values
I I ℓ I IP P - +∣ ∣ . This situation is schematically shown in the panel (b) of the same
figure.

2.2. Interaction

The analysis of the α-daughter interaction is a central issue of this field. One of the most
popular methods is that of the double folding procedure, presented in [48–50]. The double
folding potential that describes the elastic scattering of α-particles was extended to nuclei of
medium mass number A∼50–120 nuclei at energies from ∼13 to 50MeV in [51]. In [52],
the experimental scattering data of nuclei with A∼90–150 were systematically fitted at

Figure 1. Panel (a) presents an even–even core coupled with an α particle to angular
momentum IP=0. Panel (b) shows a core of angular momentum J coupled with an
odd nucleon of spin j to angular momentum I, then coupled again with an α particle
with angular momentum ℓ to total spin IP.
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energies around the Coulomb barrier. Thus, local potential parameter sets were obtained,
having a real folding potential and an imaginary potential of a Woods–Saxon surface type.

The double folding procedure to estimate the α-core potential is given by the following
integral [53–55]

V vR r r r r R r r, d d , 2.19D D D D Dò ò r rW = + -a a a a( ) ( ) ( ) ( ) ( )

where v denotes the nucleon–nucleon force and ρX the nuclear densities of the daughter
nucleus (X=D) and α-particle (X= α). This method found much use in computing the
potential between heavy ions having a Woods–Saxon shape for their densities. In our case,
the density of the daughter nucleus is given by the aforementioned distribution, while the one
of the α-particle is a Gaussian with standard parameters [49]. The resulting potential can be
decomposed into a spherical (V0) and a deformed part (Vd) as in equation (2.8). We suppose
that the daughter nucleus has an axially deformed shape. A multipole expansion of the nuclear
densities allows one to obtain the deformed part of the interaction

V V RR, , , 2.20d D D
0

åW = W W
l

l l
>

( ) ( ) ( ) ( )

where the angular component has the following ansatz

Y Y, , 2.21D D 0 W W = W Ä Wl l l( ) [ ( ) ( )] ( )

depending on the angle between the emitted α-particle and daughter nucleus Ω, as well as the
angle determining the orientation of the nuclear symmetry axis ΩD. Here, we replaced the
standard by a shorthand notation 0 l

l. The multipole formfactors Vλ(R) are given in
terms of density distributions [55]. Some authors postulate the radial formfactors in a
phenomenological way. The widely used potential is given by the M3Y nucleon–nucleon
interaction with Reid soft core parametrisation [53–55] (see [8] for computational details).
The resulting α-core potential has a Woods–Saxon shape and it is suitable for the treatment of
α-transitions from well deformed nuclei, which are successfully described by the rigid rotor
model. The decaying state is a resonant state in this potential, chosen by considering the so-
called Wildermuth orthogonality condition simulating Pauli principle described in section 5
[56–58]. It is also possible to consider an alternative approach by using a monopole pocket-
like shape [59, 60]

V R v V R R R

c R R v R R

,

, , 2.22
a m

m

0 0

min
2

0 
= >
= - -

( ) ( )
( ) ( )

whereV0 is the λ=0 part of the Coulomb plus nuclear potential which is estimated by means
of the double folding procedure. The parameters of the nuclear interaction between the α-
particle and daughter nucleus defining V0 are determined from scattering experiments which
assume that the α-particle exists with certainty, that is va=1. Therefore, the interaction must
be multiplied by a factor va<1, thus simulating the formation of the cluster on the nuclear
surface. The correct value of va is determined by the absolute value of the total decay width
[60]. α-decay b.r. to members of the ground band have a weak dependence of this factor [59].
Another approach consists of leaving the interaction potential unquenched and taking into
consideration the spectroscopic factor (2.32) as a measure of the particle formation
probability, as in [61]. The second line of equation (2.22) is the repulsive core simulating the
Pauli principle, namely the fact that the α-particle can exist only on the nuclear surface [62].
This core also fixes the energy of the first resonant state to the experimental Q-value Qα

[6, 59]. The total half-life and the partial decay widths do not depend upon the shape of this
repulsive potential [59]. In [59], the procedure to determine the matching radius Rm and the
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coordinate Rmin, corresponding to the minimal value v0, is described. It makes use of the
equality between the external attractive potential and internal repulsion, up to their first
derivative. This implies that the above interaction is continuous and dependent only on the
potential depth v0. The deformed part of the potential (2.8) is given by equation (2.20) for
rotational nuclei and by a QQ interaction for vibrational emitters

V C R R
V R

R
Q YR,

d

d
5 , 2.23d D D0 min

0
2 2 0x x= - - Ä W( ) ( ) ( ) [ ( ) ( )] ( )

where Q D2 x( ) is the quadrupole operator corresponding to the daughter nucleus, and Y2(Ω)
represents the emitted α-particle. Let us mention that this type of QQ interaction can be used
as a general ansatz within a more general Coherent State Model (CSM), describing low-lying
vibrational, transitional and rotational spectra.

2.3. Resonances

A state which decays by α-emission is identified with a narrow resonant solution of the
system of equations (2.9) that contains only outgoing components. The first step required in
order to solve this system of equations is to define the internal and external fundamental
solutions which satisfy the boundary conditions

R

R R R H R
G R F R

,

i
i , 2.24

cn
R

cn c

cn cn cn
R

cn c c

cn ℓ c ℓ c

0


  

d e

d k
d k k

º +
º +



+ ¥ +

( ) ⟶

( ) ( ) ( ) ⟶ ( )
[ ( ) ( )] ( )

( ) ( )

where ce are arbitrary small numbers. Here, the index c labels the component while n indexes
the solution. A superposition of N fundamental solutions builds each component of the final
solution. Imposing the matching conditions at a radius R1 inside the barrier, one obtains

f R R M R N

f R

R

d R
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R
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d

d d d
, 2.25

c
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c
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n
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å å

å å
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+
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( )

( )
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where the quantities Nn are called scattering amplitudes. One thus finds the following secular
equation

R R R R
0. 2.26R

R

R

R

R

R

R

R

1 1

d
d

d
d

1 1
d

d
d

d
1 1 1 1

   
   » =

+

+

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )( )

The first condition is fulfilled for the complex energies of the resonant states. They practically
coincide with the real scattering resonant states, due to the fact that the imaginary parts of
energies are much smaller than the corresponding real parts, which implies vanishing regular
Coulomb functions Fℓ inside the barrier. The roots of the equation (2.26) do not depend upon
the matching radius R1, due to the fact that both internal and external solutions satisfy the
same Schrödinger equation. To obtain the unknown coefficients Mn and Nn, it is required to
normalize the wave function in the internal region

f R Rd 1, 2.27
c

R

c
0

2
2

òå =∣ ( )∣ ( )

where R2 is the external turning point.

J. Phys. G: Nucl. Part. Phys. 45 (2018) 053001 Topical Review

7



2.4. Observables

We will determine the α-decay fine structure by calculating the logarithm of the ratio between
decay widths to ground c=0 (Ec= 0) and excited states c, i.e.

log . 2.28c
c

10
0 º
G
G

( )

We call the quantity c the intensity of the α-decay to the cth state [59]. The total half-life is
related to the decay width through the formula

T
ln 2

. 2.29


=
G

( )

α-transitions to excited states can be better analyzed by extracting the influence of the
Coulomb barrier in terms of the hindrance factor (HF), defined by the ratio between formation
probabilities to ground and excited states (as defined in [63]). By using the representation
(2.16) of the decay width in terms of the reduced width and penetrability, the logarithm of the
this quantity can be written as follows

P

P
log HF log log . 2.30c

c

c
c

10 10
0
2

2 10
0

g

g
º = - ( )

where the reduced width (or preformation probability) is computed at the touching radius

R A1.2 4 , 2.31D
1 3 1 3= +( ) ( )

in terms of the mass number of the daughter nucleus AD.
The α-particle formation probability is given by the spectroscopic factor

S
T

T
, 2.32

exp

th

th

exp
=

G

G
= ( )

which is less than unity. One also defines the spectroscopic factor for each channel c

S . 2.33c
c

0
exp

th
=

G

G
( )

Let us mention here that the spectroscopic factor can be estimated microscopically as the
integral of the preformation amplitude squared, defined as the antisymmetrised overlap
between parent and daughter times the relative α-particle wave functions [8]

S Rd . 2.34c
P

c
Dmicr

0

2ò= Y Y Ya
¥

∣ ⟨ ∣ ⟩∣ ( )( )

Finally one can introduce the so-called suppression factor (SF) that is very useful when
analyzing the adequacy of a theory, through the formula:

log SF . 2.35c c c10
exp th = - ( )

2.5. Systematics

By using the analytic semiclassical representation of the Coulomb function [8] one obtains a
linear dependence between the logarithm of the penetrability and the Coulomb parameter
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P
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v

Z

Q E
log

4
. 2.36c c

D

c

D

c
10 

c~ = ~
-a

( )

One the other hand, by fitting the realistic pocket-like potential (2.22) to a shifted harmonic
oscillator with frequency ω that is matched to the Coulomb barrier at the radius RB, one
obtains the so-called universal law for reduced widths [62]

R V
R

e

e
log

log
log

2
, 2.37c B

c

B
10

2 10
2

frag 10

2 2


 

g
w m

= - +( ) ( )

in terms of the fragmentation potential

V V Q E V
Z e

R
,

2
. 2.38C c C

D

B
frag

2
= - - =a( ) ( )

Here e 2.71828» , e 1.44 MeV fm2 = and c is the channel amplitude of the α-particle
wave function peaked on the nuclear surface. This law together with (2.36) has the following
consequences:

(1) The Viola-Seaborg rule for the partial half-lives [64]

T
aZ b

Q E
cZ d Vlog ; 2.39c

D

c
D c10 =

+
-

+ + º
a

( )

(2) The logarithm of the HF becomes proportional to the excitation energy of the daughter
nucleus [8]

E

e E f

e
log HF

log
log

; 2.40

c c
c

c c c

10
10

2

10
0
2

2

w

= +

º + ( )

(3) By using equation (2.30) one obtains a similar rule for intensities

g E h . 2.41c c c c = + ( )

Experimentally measured α-transitions were recently reviewed in [65] by using the
ENSDF database maintained by BNL [46]. A well-known systematics for α-transitions
between ground states is given by the Viola-Seaborg rule (2.39), where the logarithm of the
total half-life depends on the Coulomb parameter and charge number of the daughter nucleus.
It was useful in describing transitions between ground states in the case of α-decay [66], as
well as proton [67] and heavy-cluster emission [68, 69].

Other simple formulas for α-emission have been provided in [70, 71]. Because the
channel Coulomb parameter (2.14) is a function of the excitation energy of the daughter
nucleus, this rule was generalized for partial half-lives of transitions to excited states by
equation (2.39), written in terms of the channel daughter spin c= I. The generalized version
of the Viola-Seaborg rule is very well satisfied by all available experimental data concerning
transitions to excited states with I1 6  , as can be seen for even–even emitters in
figure 2(a), as well as for odd-mass emitters in the cases of favored (b) and unfavored
transitions (c) [65]. It is to be noticed that one obtains similar values of the parameters both
for even–even and odd-mass emitters, in the situation of favored as well as unfavored tran-
sitions. We will analyze in our review the other rules for HF (2.40) and intensities (2.41).
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3. Semiclassical approach

The semiclassical calculations for α-decay can be divided in two categories. The first family
is based on the preformed-cluster model of Blendowske and Walliser [72–79]. The decay
width is evaluated as a product of three model-dependent quantities: the frequency of assault
on the barrier per second ν, the cluster preformation probability on the nuclear surface Pα, and
the barrier penetration probability of the (preformed) cluster P. The second family is based on
the fission theory describing the decay process by a continuous change of geometrical shapes
[80–84]. Note that the cluster is considered to be formed gradually during the adiabatic
rearrangements of parent nuclei. The decay width is expressed as a product of two model-
dependent quantities: the frequency of oscillations in the fission mode νf (or the zero point
vibration energy Eν= hνf/2) and the barrier penetration probability P. In both cases, the α-
decay process is treated as a one-dimensional problem and the one-dimensional Wentzel–
Kramers–Brillouin (WKB) semiclassical approximation is used to calculate the penetration
probability P as follows,

P V R Q Rexp
2

2 d , 4.1
R

R

1

2

 ò m= - - a
⎛
⎝⎜

⎞
⎠⎟[ ( ) ] ( )

where R1 and R2 are the inner and outer turning points satisfying the expression
V R V R Q1 2= = a( ) ( ) . The semiclassical calculations have proved to be successful in
reproducing the experimental α-decay half-lives especially for favored α-decay [74–84]. As a
straightforward extension for the fine structure, one treats the decay channels involved as
individual events with different decay energies and various centrifugal barriers together with
WKB penetration probabilities that are separately evaluated for them [85–89]. This procedure
has a serious drawback. That is, it does not address the question of coupling among various

Figure 2. Logarithm of the partial half-life versus the generalized Viola-Seaborg
parameter (2.39) for even–even (a), odd-mass favored (b) and odd-mass unfavored
emitters (c). Here we considered data with I1 6  in daughter nuclei. The
parameters of the fitting lines defined by equation (2.39) are given in [65]. Adapted
figure with permission from [65], Copyright (2015) by the American Physical Society.
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decay channels. Nevertheless, it serves as a good attempt for the fine structure owing to
practical conveniences. In 2006, Xu and Ren proposed the simple WKB barrier penetration
approach (belonging to the first category) for the α-decay b.r. to excited states of even–even
nuclei [85, 86]. The interaction potential V(R) in equation (4.1) consists of the Coulomb and
centrifugal potentials, V R Z Z e R ℓ ℓ R1 21 2

2 2 2 m= + +( ) ( ) ( ), where Z1 and Z2 are,
respectively, the atomic numbers of the α particle and the daughter nucleus, and μ is the
reduced mass of the α-daughter system. In the standard square potential well, the inner
turning point is approximated by the touching radius R0. At this radius the height of the
centrifugal barrier is significantly smaller relative to the height of the Coulomb barrier,

ℓ ℓ

R

Z Z e

R
ℓ ℓ

1

2
0.002 1 . 4.2c d

2

0
2

2

0


x

m
=

+
+( ) ( ) ( )

By expansion in terms of the small quantity ξ, the penetration probability is given in a
straightforward manner [10, 85],

P Q E ℓ Z Z e R

Z Z e Q E Z Z e R

, , exp 4 2

exp 2 exp 2 2 . 4.3

c
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1 2
2
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1 2
2
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The first term remains constant for one decay having no influence on the fine structure, the
second term accounts for the influence of the excitation energy Ec on the penetration, and the
third term accounts for the influence of the additional centrifugal barrier. The b.r. for the α-
transitions to ground 0+ and excited 2+ states are reproduced with satisfying accuracy.
However, a significant overestimation emerges for the branching ratios to excited 4+ states in
the α-decay of 224−230Th, 228−238U, 236−244Pu, 240−248Cm, 240−252Cf, and 250−254Fm. This
was called the abnormity of excited 4+ states [85].

In 2009, Denisov and Khudenko [87] further investigated α-decays to ground and
excited states for heavy deformed nuclei in the unified model for α-decay and α-capture
(UMADAC). This model also belongs to the first category. The calculated b.r. show good
agreement with the experimental data for ℓ= 0 and ℓ= 2 transitions, corresponding to ground
0+ and excited 2+ states in daughter nuclei. But the abnormal overestimation still exists for
the b.r. to excited 4+ states. Then, the semiclassical calculations of the second category were
extended to describe the fine structure as well. In 2010, the α-decays to the members 0+, 2+,
and 4+ of the g.s. rotational band were studied for even–even nuclei in the generalized liquid
drop model [88]. As previously found, the α-decay intensities to 0+ and 2+ states are in good
agreement with the experimental data while the α-decay intensities to 4+ states are apparently
overestimated for the α-decays of some Pu, Cm, and Fm isotopes. Santhosh et al also
performed systematic calculations of the α-decay fine structure observed in even–even
emitters within the Coulomb and proximity potential model for deformed nuclei (CPPMDN)
[89]. There is still a considerable overestimation of the b.r. to excited 4+ states for some Pu,
Cm, and Cf emitters. In a word, the semiclassical calculations of both kinds tend to over-
estimate the b.r. to excited 4+ states and microscopic calculations are required to
describe them.

To gain clear insight into such an unwelcome overestimation, we take the α-decay fine
structure observed in the decay chain Cf Cm Pu246 242 238  for an example and list in
table 1 the detailed results obtained from the various semiclassical calculations mentioned
above. As can be seen, all the semiclassical models tend to overestimate the b.r. to excited 4+

states by more than one order of magnitude except for the CPPMDN result for the emitter
238Pu where the b.r. is underestimated by a factor of roughly 20.
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Table 1. Branching ratio (b.r.) to five low-lying members of the g.s. rotational band in the α-decay chain of 246Cf  242Cm  238Pu. The b.r. is
given as a percentage (in %). The comparison of the theoretical results with the experimental data is shown and the calculated results are divided
into two groups, semiclassical and coupled-channel results.

Transition b.r.
b.r. (semiclassical) b.r. (coupled-channel)

(exp) [85] [87] [88] [89] [60] [58] [61]

246Cf  0+ 79.3(10) 73.9 55.9 — 65.58 61.74 70.83 71.45
 2+ 20.6(10) 24.3 33.0 — 29.38 38.07 28.86 28.38
 4+ 0.15(2) 1.82 9.79 — 4.71 0.19 0.29 0.17
 6+ ≈0.016 0.032 1.35 — 0.270 — 0.0236 0.00235
 8+ — — — — — — 1.4710−4 −
242Cm  0+ 74.08(7) 76.0 59.0 70.91 68.87 63.30 68.87 82.75
 2+ 25.92(6) 22.7 32.3 26.47 28.00 36.60 31.04 17.21
 4+ 0.035(2) 1.333 7.85 2.62 3.58 0.101 0.077 0.040
 6+ 0.0046(5) 0.0152 0.82 — 0.149 — 0.0053 0.000334
 8+ 2.010−5 3.210−5 0.0345 — 0.00210 — 3.7910−5 −
238Pu  0+ 70.91(10) 77.41 62.00 72.75 70.72 64.96 67.63 69.85
 2+ 28.98(10) 21.52 31.20 25.17 29.32 34.97 32.02 29.93
 4+ 0.105(5) 1.06 6.28 2.08 0.00538 0.069 0.343 0.213
 6+ 0.0030(1) 0.009 0.492 — 0.000177 — 0.00049 5.6510−5

 8+ 6.8(4)10−6 1.4110−5 0.0144 — 1.8610−6
— 2.0310−5 −
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The gross features of the α-decay fine structure were described within the semiclassical
approach by Delion et al in [90], by using a realistic α-daughter double folding potential. The
most relevant part of this potential is the region between the inner and outermost turning
points, where it can very well be approximated by

V R c a R R R R

Ze R R R

,

2 , . 4.4
m

m

0
2

2

= - -
= >

( ) ( )
( )

The parameters are found by a fitting procedure, while the matching radius Rm is determined
by imposing the continuity of the potential. This method was applied to describe α-decay
from even–even emitters to yrast states in the daughter nuclei for which there are available
experimental data [91]. The partial decay widths were evaluated by using the spherical
semiclassical approximation, which is known to be 1%–2% accurate with respect to the exact
solution [8]. The action integral for the nuclear interaction using the expression of
equation (4.4) can be evaluated analytically. It is found that Rm≈R0+0.3 fm.

The partial decay width to the excited state with spin I and excitation energy Ec is
proportional to the exponent of the sum of the two action integrals [8],
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where the centrifugal potential was evaluated at

R R R R c a2 2. 4.61 0 0= + = -˜ ( ) ( )

The inner action integral is given by
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where R1 is the inner turning point R R c Q

a1 0= - - a . The outer part of the action integral is
given by
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In figure 3 were analyzed available experimental data concerning α-decays to excited states in
even–even nuclei [61]. Here there are plotted the intensities defined by equation (2.28) versus
the excitation energy E2 of daughter nuclei corresponding to (a) c=J=2, (b) c=J=4
and (c) c=J=6. In this figure, the experimental values are represented by dark symbols
while open symbols correspond to the computed results. One sees that the experimental
features are reasonably well reproduced by the theoretical estimates. One notices the linear
increasing trend of the intensity 2 , as predicted in [62].
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Finally, let us mention that the deformed WKB approach, called Fröman method [92],
was used to estimate HF’s in rotational nuclei by using a simple phenomenological ansatz for
the preformation factor in [93].

4. Cluster-core model

A cluster model describes the α-particle dynamics by a spherical Schrödinger equation using
an appropriate phenomenologic potential. Due to its simplicity it became very popular for
various simple systematic calculations concerning transitions to ground and excited states.
The α-transitions between ground states remain an interesting research topic, with recent
results found in [94–96]. G.s. transitions were treated alongside exotic decay processes from
heavy nuclei in [97], using a cluster model that employed a local, effective cluster-core
potential based on a folding procedure. This model was extended in [98], so that it could take

Figure 3. Intensity (2.28) versus the excitation energy E2 of daughter nuclei for
c=J=2 (a) c=J=4 (b) and c=J=6 (c). The experimental values (adapted
from [91]. © IOP Publishing Ltd. All rights reserved. ) are represented by dark symbols
while open symbols correspond to the theoretical estimates.
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into account the different sizes of the emitted fragments. This yielded a good reproduction of
measured half-lives both for exotic and α-emission processes using a fixed set of parameters.
Buck et al [99–102] have shown that the assumption of a preformed α-cluster in an orbit with
a large global quantum number in heavy nuclei is very fruitful in explaining the observed
partial half-lives for g.s. to g.s. transitions in even–even nuclei and favored transitions in odd-
mass nuclei. In the even–even case, this procedure was also employed for exotic decays. A
version of this model using a more realistic interaction potential was presented in [103].
Emphasis on the favored α-decay of odd-mass nuclei using a simple cluster model was put in
[104]. α-clustering in 212Po has been thoroughly investigated as well. In [105], the decay
properties in the α and γ channels of the low-lying states of this isotope have been studied
using an α-cluster model. The known lifetimes of the decaying states and the α branching
ratios have been reproduced with a reasonable accuracy. In [106], a model describing an α-
cluster in orbit around a closed shell with a universal interaction was used to give a
description of the energy spectrum, B E2( ) transition strengths, α-decay widths and differ-
ential cross sections for the systems corresponding to an α-cluster interacting with a 16O and
40Ca core. In [107], the same procedure was extended to 212Po and to the consistent
description of favored α-decay half-lives throughout the Periodic table. The interaction thus
developed was furthermore constrained in [108], where it was shown that a suitable para-
metrization could give an adequate description of the low-energy positive-parity structure
properties of 212Po as well as the differential cross sections for low-energy α-scattering on a
208Pb target.

5. Rotational nuclei

Rotational even–even emitters are well deformed nuclei with a quasirotational spectrum
starting with E2+< 100 keV. The first calculations of the α-decay widths in rotational nuclei
within the coupled channels approach were given in [39]. During last two decades a large
amount of data became available in regard to the α-decay fine structure, as can be seen in
[46, 91]. These data were analyzed within the coupled channels formalism [59, 60], by using
the double folding potential plus a repulsive core simulating the Pauli principle. Also, the
coupled channels analysis of the α-decay fine structure using the double folding potential
together with the Wildermuth rule to simulate the Pauli principle was presented in several
papers [56–58, 109, 110] and it will be analyzed in the next sub-section.

5.1. Double folding interaction plus repulsive core

Here we summarize the main results concerning α-transitions to rotational states given in
[59, 60], by using a double folding α-core interaction plus a repulsive core to simulate the
Pauli principle, namely the fact that the α-particle can be formed only on the nuclear surface,
as described in section 2. Let us consider an α-decay process P D J a +( ) , where J
denotes the spin of the rotational state of an even–even nucleus, i.e J= 0, 2, 4, 6,K. We
describe the α-core dynamics by using the stationary Schrödinger equation (2.5), where the
core coordinates, describing the orientation of the daughter major axis in the laboratory
system, are given by the Euler angles ξD=ΩD=(jD, θD,0).

The Hamiltonian of the α-transitions in the laboratory system of coordinates is given by
equation (2.6). The interaction between nuclei is estimated in terms of the double folding
method (2.19), by using for the α-particle a Gaussian with standard parameters [49]. The
resulting potential can be divided into a spherical (V0) and a deformed component (Vd) (2.8),
which can be expanded in multipoles as in equation (2.20), depending on angular harmonics
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(2.21). To this potential we will also add a simple repulsive core in the monopole channel,
depending upon one independent parameter, as shown by equation (2.22). The role of this
potential is to simulate the Pauli principle and to adjust the energy of the system to the
experimental Q-value. The total half-life and the partial decay widths practically do not
depend upon the shape of this repulsive potential [59].

5.2. Results for even–even emitters

If the rotational states of the core belong to the ground band (with the intrinsic angular
momentum projection K= 0) the daughter wave functions satisfy the following eigenvalue
equations

H Y E Y , 5.1D JM D J JM DW = W( ) ( ) ( )
i.e. they are the normalised Wigner functions with K=0. The α-daughter wave function is
given by

R
f RR,

1
, , 5.2D

J
J J DåY W = W W( ) ( ) ( ) ( )

where we denoted the α-core angular harmonic by

Y Y, . 5.3J D J D J 0 W W = W Ä W( ) [ ( ) ( )] ( )
Therefore the rotation of the core is compensated by the rotation of the α-particle in the
opposite direction, while the channel is defined by the spin of the daughter nucleus c= J.
Using the orthonormality of the angular functions that enter the superposition (5.2), one
obtains in a standard way the coupled system of differential equations for radial components
(2.9) where the coupling matrix is given by equation (2.10). The matrix element of the
deformed part of interaction is given in terms of the Clebsch–Gordan coefficients as follows

V R V R
J

J
J J

2 1

4 2 1
, 0; , 0 , 0 . 5.4J d J

0

2  å p
l=

+
¢ +

¢
l

l¢
>

⟨ ∣ ( )∣ ⟩ ( )
( )

[⟨ ∣ ⟩] ( )

The system of radial equations (2.9) acquires the asymptotic Coulombian form (2.12) beyond
R R 4 fmc= + , where R A A1.2c D

1 3 1 3= + a( ), because the higher multipoles of the
potential 0l ¹ are centered around the nuclear surface, as can be seen in figure 4.

In [59] was performed an analysis of α-decays for 20 rotational nuclei with known ratios
2 and 4 , and one where 4 was only given as a limit. In the more recent [60], the analysis is

extended to 52 nuclei. The experimental data, namely the excitation energies, total half-lives
and Q-values, were taken from the compilation [91]. The intensities for J=2+, J=4+ states
and total half-lives, with respective uncertainties, were compared with the ENSDF database.
Only one of the half-lives, namely 240Pu, slightly differs from the value of [91]. The
deformation parameters were taken from the systematics in [111]. This data for daughter
nuclei is presented in table 1 of [59]. For a more extended analysis, see [60].

In figure 5(a) are given the quadrupole (squares) and hexadecapole deformations (tri-
angles), while in (b) the experimental values of the ratios 2 , 4 (squares) are shown.

In order to describe absolute half-lives, a linear function with a negative slope was used
together with the following relation for the quenching factor entering equation (2.22):
va=0.668−0.004(A− 208). The value of the repulsive strength was taken as
c 100 MeV fm 2= - . One sees that the agreement with experimental data for 2 is very good.
Concerning 4 , a very good agreement was achieved only for the Z=90 isotope chain. For
the last Z=96 and Z=98 chains, the agreement is within a half-order of magnitude, while
the central peak, around the Z=94 chain, is not reproduced. The main trend of the
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experimental and computed 2 values in figure 5(b) is clearly correlated with the quadrupole
deformation in (a). The same is true, but mainly for the computed 4 values, which are
correlated with β4 in (a). Thus, the existence of the central peak for experimental 4 data
corresponding to the neutron chain Z=94 seems to be out of the correlation between the fine
structure and deformation parameters. However, the connection between decay widths and
deformation parameters seems to be a universal property of emission processes. This feature
was already evidenced for α-decays between ground states in [7].

5.3. Double folding interaction and the Wildermuth rule

In this picture, the original Woods–Saxon shape of the α-core potential given by the double
folding procedure is kept, but the decaying state is chosen by considering the Wildermuth
orthogonality condition [112]. The α-cluster is coupled to an axial-symmetric and well-
deformed daughter nucleus. By expanding the total wave function of the system into a sum of
partial waves one obtains the coupled-channel equations given by equations (2.9) and (2.10)
for the radial wave function representing the relative motion of the α particle with respect to
the daughter nucleus, fc(R). Here, c nℓIº ( ) labels the channel quantum numbers, where n
denotes the number of nodes, ℓ is the angular momentum carried by the emitted α particle and
I is the spin of the daughter nucleus. As usually, we denote by IP the spin of the parent

Figure 4. The radial components of the renormalised α-nucleus potential for λ= 0
(dots), λ= 2 (dashes) and λ= 4 (dotted–dashed). The solid pocket-like curves (1) and
(2) are the monopole parts of the interaction (2.22), giving the same Q-value. Their
parameters are (1) c Q v90.117 MeV fm , 10.272 MeV2

0= + =a
-( ) ( ) and (2)

c Q v30.296 MeV fm , 3.816 MeV2
0= + = -a

-( ) ( ) [59]. The horizontal line
denotes the Q-value. The dotted curve indicates the original double folding result.
The decay process is UPu232 228 a + . Adapted figure with permission from [59],
Copyright (2006) by the American Physical Society.
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nucleus. The angular momenta should satisfy the triangular relation owing to conservation of
angular momentum, I I ℓ I IP P - +∣ ∣ ∣ ∣. Thus, one shall consider many more decay
channels in the α-emission from odd-mass or odd–odd nuclei than in the case of even–even
nuclei, where (as noticed in the previous sub-section) α-decay occurs from ground IP = 0+

states of even–even nuclei and one obtains a single ℓ-value ℓ=J for the daughter state J.
To manipulate the dynamics, the key point is the interaction matrixV rcc¢( ) which contains

most of the nuclear physics. The nuclear potential given by the double folding procedure with
axially deformed density of the daughter nucleus provides a Woods–Saxon shape. It can be
parametrized as follows

V R
V

R R a
,

1 exp
. 5.5N

0q
q

=
+ -

( )
([ ( )] )

( )

with the half-density radius R r A Y Y1D0
1 3

2 20 4 40q b q b q= + +( ) [ ( ) ( )], where θ is the
orientation angle between the coordinate vector R of the α-cluster and the symmetry axis of
the core, and β2 and β4 are, respectively, quadrupole and hexadecapole deformation
parameters of the deformed daughter nucleus. This potential not only has a simple and clear
form but also achieves remarkable success in both nuclear structure and nuclear reactions.
Moreover, it has practical advantages in numerical efficiency since the description of the fine
structure requires high precision and good stability. There are two techniques available for the
interaction matrix: one is the diagonalization of the coupling potential between channels
[57, 113] and the other is the multipole expansion of the interaction potential [58, 114]. In the
following, we shall present the theoretical basis of these two techniques, which are necessary
to understand α-transitions from ground or isomeric states of the parent nucleus to various
members of a rotational band in the daughter system.

Figure 5. (a) Deformation parameters β2 (squares) and β4 (triangles) versus the decay
number given by the first column in table 1 of [59], corresponding to
Z n Z90 1 5 ,= = - =( ) n Z92 6 10 ,= - =( ) n Z94 11 15 ,= - =( )

n Z96 16 19 ,= - =( ) n98 20 21= -( ). (b) Experimental ratios ,2 4  defined
by equation (2.28) (squares) and the corresponding computed values (open circles).
The attractive quenching parameter is given by the rule v A0.668 0.004 208a = - -( ).
The corresponding data in table 1 of [59] are labeled by the index (a). Adapted figure
with permission from [59], Copyright (2006) by the American Physical Society.
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In the diagonalization of the coupling potential between channels, one first treats the half-
density radius R(θ) in the nuclear potential (5.5) as a dynamical operator [57, 113],
R R O R R Y YD0 0 2 20 4 40q b q b q + = + +( ) ˆ [ ( ) ( )]. Thus, the deformed nuclear potential is
written as

V R O
V

R R O a
,

1 exp
. 5.6N

0

0

=
+ - -

( ˆ)
[( ˆ) ]

( )

In order to evaluate the matrix elements of the deformed potential between channel states I∣ ⟩
and I ¢∣ ⟩, one needs to search for the eigenvalues λ and eigenvectors l∣ ⟩ of the operator Ô,
O l l l=ˆ∣ ⟩ ∣ ⟩. They can be easily obtained by diagonalizing the matrix Ô, having the elements
written in the channel representation as follows [57, 113]:

O
ℓ I

I
R I ℓ I

2 1 2 1

4 2 1
0; 0 0 . 5.7II

ℓ
ℓ D

2,4

2å p
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Then, following the general methods one obtains the interaction matrix elements [57, 113]

V R I V R O I I I V R, , . 5.8II
N

N Nå l l l= ¢ = ¢
l

¢( ) ⟨ ∣ ( ˆ)∣ ⟩ ⟨ ∣ ⟩⟨ ∣ ⟩ ( ) ( )

The multipole expansion of the nuclear potential VN is given by (2.20) where only even
values of λ appear in the summation owing to the axial symmetry. In the systematic calcu-
lations of α-decay half-lives, good convergence can be achieved by expanding the potential in
spherical multipoles to the 4th order [56]. This is certainly not sufficient for the fine structure
description because the numerical requirements increase greatly. The dependence of the
theoretical results on the expansion order λmax is discussed. In general, the expansion order
λmax has a value of more than 8, yielding the approximately same results. So it is sufficient to
take λmax= 10 for proper convergence. Nevertheless, for the sake of good stability, the
potential VN is expanded in multipoles to order 12 in the calculations [58, 109, 110].

For rotational nuclei, the reduced matrix element of Yλ(Ω) in equation (2.21), involving
the daughter wave functions is given the standard expression in terms of the intrinsic angular
momentum projection on the symmetry axis K [58, 114, 115]. If α-decay occurs from an
even–even nucleus to the g.s. rotational band in the daughter nucleus, the intrinsic angular
momentum projection K is equal to zero. In this way, the dynamic effects of the core nucleus
are taken into full account in dealing with the interaction matrix element. It is then convenient
to evaluate the coupling potential between channels c=(ℓ, I) and c ℓ I,¢ = ¢ ¢( ) [58, 114]:

V R V R ℓ I

ℓ ℓ I K IK W ℓ I I ℓI

1

4
2 1 2 1 2 1

0; 0 0 ; 0 ; , 5.9
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where a b c;a b g⟨ ∣ ⟩ is the Clebsch–Gordan coefficient and W(abcd; ef ) is the Racah
coefficient.

After evaluating the interaction matrix elements, one can numerically integrate the
coupled equations (2.9) with outgoing wave boundary conditions. The depth of the nuclear
potential V0 is adjusted to reproduce the experimental α-decay energies and the eigen-char-
acteristic of the decay channels. The quantum numbers (nℓ) of the solution are determined by
the Wildermuth rule G=2n + ℓ [112]. This rule is an approximate treatment of the Pauli
exclusion principle, ensuring the α-cluster is completely outside of the shell occupied by the
core nucleus. It also serves as a useful guide for setting the global quantum number G [116].
With the radial wave function fc(r), one can express the partial width of the channel c in the
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form given by equation (2.15), i.e. [58, 114]

R
f R

G R F R
, 5.10c

c c

ℓ c ℓ c

2 2

2 2

 k
m k k

G =
+

( )
∣ ( )∣

( ) ( )
( )

with Q E2c c k m= -a( ) . The above expression is valid only for large distances beyond
the range of the nuclear potential and beyond the distance where the Coulomb potential can
be regarded as spherically symmetric. Furthermore, the calculated results of Γc show rather
weak sensitivity to the choice of R.

Then, one turns from the dynamics part of α-decay to the structure part. As is well
known, the α-particle formation is a basic open problem for nuclear structure theory
[117–119]. Although spin–orbit and Coulomb forces are strong in heavy nuclei, thereby
suppressing cluster structure, there is evidence supporting an admixture of cluster states and
mean-field states. A pure cluster configuration for 94Mo and 212Po was applied to investigate
their g.s. bands, and the calculated B(E2) values show good agreement with the experimental
data [120]. The enhanced E1 transitions were observed for the first time in 212Po and well
interpreted by an α-clustering structure [121]. The α-preformation factor Pα is thus intro-
duced for heavy nuclei, which measures the extent to which the α-cluster is formed on the
nuclear surface. The microscopic evaluation probably offers the most rigorous treatment of
Pα, but this approach is a formidably complex problem. Various shell models with improved
ingredients have been devoted to this issue and the Pα factor was substantially underestimated
by more than one order of magnitude [122, 123]. Varga et al [124] combined shell-model-
type and cluster-model-type basis states to investigate the α-clustering component in 212Po,
and the α-decay width of 212Po was well reproduced with the resulting Pα factor. But such
calculations have not been extended for other heavy nuclei due to considerably increasing
complication of the spatial configuration of nucleons. Experimentally, the α-preformation
factor was extracted by (n, α) and (p, α) reaction analysis and by the analysis of α radio-
activity of even–even nuclei [125]. It was found that the Pα factor has a value less than unity
and varies smoothly in the open-shell region for heavy and superheavy nuclei [125]. In view
of these difficulties and facts, one convenient way to fix the Pα value consists in taking the
same preformation factor for a certain kind of nuclei (even–even, odd-A, and odd–odd)
[56–58, 74, 75]. Very recently Xu et al have calculated the α-cluster formation in heavy
nuclei by using the quartetting wave function approach [126]. It was found that the α-cluster
formation is quite sensitive to the interplay of the mean field felt by the α-cluster and the Pauli
blocking as a consequence of antisymmetrization.

The α-preformation factor Pα is of course important for absolute α-decay rates, but the
detailed value of Pα has little influence on the α-decay fine structure since it is kept the same
for various members of a rotational band in daughter nuclei. Considering that the internal
structure of nuclear states has some influence on α-transitions as well, the hypothesis of
Boltzmann distributions (BD) for daughter states was proposed E cEexpI Ir = -( ) ( )
[58, 109, 110], where EI (in MeV) is the excitation energy of the daughter state I. Direct
derivation of this hypothesis is rather difficult because it requires microscopic calculations of
Pα, but there is indirect evidence supporting the validity of the hypothesis. Stewart et al [127]
used the experimental b.r. to extract the internal amplitudes aℓ (associated with the α-pre-
formation factor) for even–even actinide α-emitters. It was found that the calculated aℓ-values
are essentially constant for all even–even actinide nuclei and they show the property
a a a0 2 4> >∣ ∣ ∣ ∣ ∣ ∣. Delion et al [62, 65] used a shifted harmonic oscillator plus Coulomb
interaction to calculate the reduced width (proportional to the α-preformation factor) for
even–even nuclei. It was shown that the reduced width to excited 2+ states has an exponential
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dependence on the excitation energy. In addition, one would like to emphasize that it is not
the first time to propose the BD hypothesis in modern physics. As early as 1917, Einstein
[128] had proposed the hypothesis of canonical distributions for molecules with a set of
discrete states on the quantum theory of radiation. It is natural to generalize the canonical
distribution from molecules to nuclei. These available theoretical works provide a sound basis
for the BD hypothesis. Based on the experimental b.r. of even–even nuclei, the BD factor c is
determined as c=2.38 MeV−1 [58]. It is known that the low-lying excitation spectra of
heavy nuclei exhibit energies from tens to hundreds of keV. So, the calculated b.r. to low-
lying states show weak sensitivity to the BD factor c. Ultimately, the total width is given by

P EIℓ I IℓrG = å Ga ( ) and the b.r. to the daughter state I is expressed
as P EBRI I ℓ Iℓr= å G Ga ( ) .

5.4. Results for well-deformed even–even, odd-mass, and odd–odd emitters

In view of the fact that the α-decay spectra observed in well-deformed even–even nuclei are
distinct (from ground 0+ states to various members of the g.s. rotational band) and each
member exhibits one single channel, the α-decay fine structures in even–even nuclei serve as
a good test for the coupled-channels approach. First, the α-decays of even–even transfermium
nuclei with Z 98 were investigated in the coupled-channel representation [57], since they
exhibit strong collective motion with a regular g.s. rotational spectrum. The diagonalization
method was used to deal with the coupling potential and four channels were considered for
one α-decay. The results shown in table 1 of [57] are in good agreement with the exper-
imental data concerning both total α-decay half-lives and b.r. to various daughter states. As a
rule, the most accurate results for the b.r. are those of the transitions to ground states and to
excited 2+ states. The results for the transitions to excited 4+ states are less accurate. For the
transitions to excited 6+ states, the results are slightly worse but acceptable. Another
approach, using the multipole expansion of the interaction, was also used to describe the α-
decay fine structures in even–even nuclei [58]. Moreover, the dynamical effects of the core
nucleus were introduced into the coupling potential and the BD hypothesis for nuclear states
was adopted for daughter nuclei. Five-channels calculations were performed for the α-decay
fine structures observed in 35 well-deformed even–even nuclei with Z=92−106. The
detailed results can be found in [58, 116]. The experimental b.r. to 0+, 2+, 4+, 6+, and 8+

states are, respectively, reproduced with mean factors of 1.1, 1.3, 2.7, 3.3, and 3.2. In
particular, the five-channels calculations give a precise description of the b.r. to excited 4+

states in contrast to the semiclassical calculations overestimating them by more than one order
of magnitude. In table 1, the coupled-channel results obtained from different models are also
displayed for comparison. The comparison with the semiclassical results gives a strong
indication of the importance of the coupling effects, which cannot be ignored especially for
the transitions to highly excited states. For the b.r. to 0+, 2+, and 4+ states, the five-channels
results of [58] generally follow the theoretical results of [61] and all of them reproduce the
experimental data well. The experimental b.r. to 6+ states are quite small (less than 0.02%). It
is hard to calculate such small components accurately and safely because they are rather
sensitive to various aspects in a complicated system. As expected, the five-channels calcu-
lations of [58] and the four-channels calculations of [61] yield different results for them in
some cases.

The fine structure observed in α-decay is closely associated with the structure properties
of daughter nuclei. It is interesting to check the sensitivity of the theoretical results to the
structure properties of daughter nuclei. As an example, we take the fine structure observed in
the α-decay of 244Cm. First, five-channels calculations are separately performed with different
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quadrupole deformations β2. If the β2 value is increased from 0.200 to 0.230, minor changes
in the b.r. to ground 0+ and excited 2+ states are seen. That is, the b.r. to ground 0+ states is
decreased by 4.1% from its original value of 74.5% and the one belonging to excited 2+ states
is increased by 4.2% from its original value of 25.3%. But the b.r. to excited 4+ and 6+ states
have a strong dependence upon the β2 value, as shown in figure 6(a). This is not so surprising
because small components are of high sensitivity to internal factors in a complicated system,
as stated above. Then, the effect of the excitation energy of daughter nuclei is examined. As
the rotational band energy E I I 1I Ik= +( ) is changed from E2=40 keV to E2=80 keV,
the b.r. to excited 2+ states is decreased by a factor of about 0.45 from its original value of
29.5%. Figure 6(b) illustrates the calculated b.r. to excited 4+ and 6+ states as a function of
the excitation energy E2 for the α-decay of 244Cm. One can see that such a decreasing trend
becomes more significant as one proceeds to higher-spin states. This is due to the enhanced
sensitivities and also because the excitation energies of the higher-spin states vary more
obviously with κI than the low-lying states. The theoretical analysis presented above suggests
that the b.r. to high-spin states constitute an important and sensitive probe of the structure
properties of daughter nuclei. Recently, decay spectroscopy of heavy elements has been
established and new high-statistics data have been obtained [40–45]. It would be of great
interest to measure the α-decay intensity to high-spin states and explore the structure prop-
erties such as deformations and energy spectra.

The evolution of nuclear structure correlates with the integrated strength of the residual
valence p–n interaction and the simple valence nucleon product NpNn or
P N N N Np n p n= +( ) can be used to gauge this interaction [129]. Various structure quantities
have been displayed to follow certain simple trends in the N Np n scheme [130–135], such as
nuclear deformation, B(E2) values, ground band energies of even–even nuclei, core cluster
decompositions in the rare earth region, yrast energies of even–even nuclei, α spectroscopic
factors, and so on. Bucurescu and Zamfir also analyzed the α-decay fine structure of even–
even nuclei in the P scheme [136, 137]. Three features were highlighted in terms of the

Figure 6. Dependence of the calculated branching ratios to excited 4+ and 6+ states
upon the quadrupole deformation β2 (a) and energy spectrum (b) of daughter nuclei for
the α-decay of 244Cm.
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experimental data: (i) a practically exponential increase observed for excited 2+ states for the
collective nuclei (with P� 4.0); (ii) a marked maximum around P 7.5» for excited 4+ states;
(iii) a decrease for excited 6+ states, in the range P4.0 7.0  , a variation practically out of
phase with that of the 4+ state, after which there is a hint of stagnation or even slight increase.
For even–even α-emitters, one also characterizes the α-decay fine structure by defining the
relative intensity (2.28) [59, 60] which we rewrite here for convenience

log , 5.11Jℓ Jℓ10 00 º G G( ) ( )

where JℓG represents the partial decay width of the channel J ℓ,( ). This quantity Jℓ measures
the relative intensity of different channels (J, ℓ) with respect to the favored channel (0, 0).
Figure 7 displays the calculated relative intensities Jℓ for excited J=2+, 4+, and 6+ states
in the P scheme for well-deformed even–even rotational nuclei, compared with the
systematics of the experimental data (the upper panel). The theoretical results contain the
three-channels calculations of Delion et al [59, 60], the four-channels calculations with the
diagonalization technique for the interaction matrix elements [57], and the five-channels
calculations with the multipole expansion of the interaction potential [58]. For the case of
excited 2+ states, the four-channels and five-channels calculations show similarly good results
and the three-channels analysis is slightly worse in the larger P region. For the case of excited
4+ states, the results of the three cases appear to form a peak around P 7.5» like the
experimental results, but it is not evident especially in the smaller P region (corresponding to
the outset of U, Pu, and Cm isotopic chains). This can be understood since in these α-decays,

Figure 7. Relative intensities c for excited J= 2+, 4+, and 6+ states as a function of
the quantity P=NpNn/(Np + Nn) for well-deformed rotational daughter nuclei with
Z 90 . Upper panel: the theoretical results are obtained using the coupled-channels
approaches, containing the three-channels (3-cs) [59, 60], four-channels (4-cs) [57],
and five-channels (5-cs) [58] calculations. Lower panel: the theoretical results are
obtained using the semiclassical methods, containing the simple barrier penetration
approach [86], the UMADAC [87], and the CPPMDN [89]. For the α-decay of 248Fm,
the 2 value obtained within the CPPMDN has a sudden increase by about two orders
of magnitude with respect to the neighboring emitters [89], which is not displayed in
the figure for the sake of clarity.
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members of negative-parity and excited-state rotational bands, such as J= 1−, 3−, 02
+, and 22

+,
emerge with low excitation energies in the daughter nuclei [46], leading to significant effects
on the α-decay fine structure. The robust description of the fine structure observed in them
requires suitable theoretical schemes to describe the coupling between different rotational
bands. For the case of excited 6+ states, the results of the four-channels and five-channels
calculations follow the experimental points in both the systematic behavior and the
magnitude, although the scattering of the theoretical points is relatively large. In particular,
the five-channels results are able to explain the third experimental feature (iii) mentioned
above. An obvious deviation from the experimental data is the four-channels result for the
emitter 244Pu. It should be further investigated. The coupled-channels calculations can give
the results for excited 8+ states as well, but there are quite few experimental data for the
transitions to excited 8+ states; that is, about six measurements are available [46], so they are
not displayed in the figure. In addition, the semiclassical results for the fine structure were
also analyzed in the P scheme, as shown in the lower panel of figure 7. The semiclassical
calculations contain the simple WKB barrier penetration approach [86], the UMADAC [87],
and the CPPMDN [89]. Within the CPPMDN, there is an abnormal point corresponding to
the α-decay of 248Fm where the calculated 2 -value has a sudden increase by about two
orders of magnitude with respect to the neighboring emitters [89]. It is not displayed in the
figure. The CPPMDN calculations for 248Fm should be checked. As can be seen, the
differences between the experimental data and the semiclassical results are much more
considerable and the three main experimental features cannot be reproduced by them at all.
This in turn gives an indirect support to the applicability and reliability of the coupled-
channels approach.

Next, the multi-channel cluster model (MCCM) in the coupled channels framework was
extended from even–even rotational nuclei to heavy odd-mass nuclei [109]. Instead of the α-
decay to the g.s. rotational band, main attention is paid to the α-decay of odd-mass nuclei to
the favored rotational band, which is quite similar to the α-decay of even–even nuclei to the g.
s. rotational band. The number of decay channels one should consider increases greatly from
even–even to odd-mass nuclei and varies from system to system. As it is known, enough
channels are required for proper convergence in the numerical integration of the coupled
equations. The coupled-channels studies for even–even nuclei suggest that the inclusion of all
channels with ℓ� 6 suffices for the description of the α-decay fine structure. For the sake of
good convergence, all partial waves with ℓ�8 are used to decompose the total wave function
for the α-decay of even–even rotational nuclei [58], where five channels are considered for
one decay. According to the same rule, the number of decay channels for the α-decay to
favored rotational bands depends on the spin-parity Jπ of the parent state. This is because
each member of the favored band exhibits several decay channels rather than a single channel.
To be specific, the α-decays of 243Cm and 255Md from their ground states 5/2+ and 7/2− to
favored bands exhibit 21 and 24 decay channels, respectively. As a result, much effort was
made to satisfy numerical requirements and much time was spent for numerical computation.
Multi-channel calculations were performed for 32 deformed odd-mass emitters with
92<Z<103 [109]. The calculated b.r. show good agreement with the available exper-
imental data, within a factor of about 2.66. The detailed results can be found in tables(1–3) of
[109]. It should be pointed out that for the α decay of 249Cf from ground 9/2− states, the b.r.
to five low-lying members of the favored band are, respectively, known as 82.2(5)%, 4.69
(5)%, 0.30(1)%, 0.0069%, and 0.00021% while the 25-channels calculations yield the values
of 79.46%, 6.75%, 0.97%, 0.0117%, and 0.00221%. One can see that the largest deviation
from the experimental data emerges at the transition from 9/2− to 17/2− by about one order
of magnitude. But the recent high-resolution experiment [45] suggests the b.r. as 82.4(3)%,
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4.68(7)%, 0.29(1)%, 0.022(1)%, and 0.0022(3)%. The theoretical results are in excellent
agreement with the new data. Besides, for the α-decay of even–even nuclei to the g.s.
rotational band, one can notice that the b.r. to the member J is always larger than that to the
higher-lying member (J+ 1). This is consistent with the WKB barrier penetration formalism:
as one proceeds to higher spin states, the decay energy decreases and the centrifugal barrier
becomes higher, making the penetration even harder. However, in some cases concerning the
α-decay of odd-mass nuclei to the favored rotational band, there is an inversion of b.r.. That
is, the b.r. to excited (I+ 1) states is larger than that to excited I states. Table 2 displays the
calculated b.r. to seven low-lying members of the favored rotational band for the α-decay of
251Cf and 253Fm from their ground 1/2+ states. It is seen that the experimental b.r. to 5/2+

states is larger than that to 3/2+ states in both cases. The transition to 5/2+ states exhibits the
same angular momentum ℓ= 2 and the smaller decay energy with respect to the transition to
3/2+ states. In terms of the WKB barrier penetration approach, the b.r. to 5/2+ states should
be smaller than that to 3/2+ states, as shown in table 2. This is in contradiction with the
experimental data. By contrast, the MCCM results interpret well such an unexpected inver-
sion and show good agreement with the data. For the α-transitions to the high-lying members
such as 11/2+ and 13/2+ states, the experimental b.r. are still unknown and the differences
between the MCCM and WKB results are considerable. Precise measurements of them would
be most welcome to further test the validity and reliability of the two different approaches.

For comprehensiveness, the MCCM was also extended to heavy odd–odd nuclei [110].
Same as in the case of heavy odd-mass nuclei, one concentrated on the α-transitions to
favored rotational bands, the remaining unpaired nucleons being unchanged. Owing to pro-
ton–neutron coupling on the one hand, the α-decay of well-deformed nuclei can take place
not only from ground states but also from isomeric states; on the other hand, there are many
complex rotational bands in daughter nuclei leading to some difficulties in measuring α-decay
spectroscopy. Experimentally, spin-parities of daughter states cannot be assigned in many

Table 2. Comparison of the calculated b.r. with the experimental data for the α-
transitions to seven low-lying members of the favored rotational band in the α-decay of
251Cf and 253Fm from their ground 1/2+ states. The b.r. is given as a percentage (in %).
Calculations are performed within the MCCM and with the simple WKB barrier
penetration approach. The calculated b.r. are normalized for comparison with the
experimental data; that is, the sum of the calculated b.r. equals that of the exper-
imental data.

Transition EI (keV) b.r. (expt.) b.r. (MCCM) b.r. (WKB)

251Cf 1 2 + 404.90(3) 35.4(5) 33.95 26.46
3 2 + 433(2) 3.3(2) 4.24 9.13
5 2 + 448(2) 4.9(2) 5.12 7.05
7 2 + 516.68(11) — 0.16 0.58
9 2 + 550(2) — 0.13 0.34
11 2 + 652.5a — 0.00091 0.031

253Fm 1 2 + 416.8(4) 23.2(9) 20.91 14.63
3 2 + 440(4) 2.4(4) 3.15 5.90
5 2 + 460(4) 2.6(5) 3.78 4.50
7 2 + 514.1a — 0.19 1.84
9 2 + 550.1a — 0.16 1.23
11 2 + 635.2a — 0.0020 0.053
13 2 + 687.2a — 0.0013 0.029
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cases and even spin-parities of parent states cannot be determined explicitly. Based on the
NuDat database [46] and the Nubase2012 table [47], there are only four α-decays from
ground or isomeric states available [46] for which the transitions to the low-lying members of
the favored band have been observed. Furthermore, the spin-parities of the states involved in
the transitions have been determined ambiguously or tentatively. In the calculations, enough
decay channels are considered according to the same rule for even–even and odd-mass
emitters. The number of the channels for odd–odd systems is comparable with the case of
odd-mass nuclei and varies with the decaying state. For example, the α-decay of 240Am from
ground 3− states to Kπ=3− rotational bands exhibits 23 decay channels and the α-decay of
242Am from isomeric 5− states to Kπ=5− rotational bands exhibits 25 decay channels. For
comparison, the simple WKB barrier penetration approach was used to evaluate the b.r. to
favored rotational bands as well. The details can be found in [110]. It is found that the WKB
calculations seem to overestimate the b.r. to the second and third members of the favored
band, while the MCCM calculations reproduce them well. This is quite similar to the cal-
culations for even–even nuclei.

In the previous studies of odd-mass and odd–odd α emitters, main attention was paid to
the α-decay to favored rotational bands, since in most cases such α-transitions play a
dominant role in the fine structure. There are some special cases where the intensity to other
rotational bands is non-negligible and even more significant as compared with the favored
rotational band. Such special cases can be attributed to two aspects. One is that the favored
rotational bands are located at the high excitation-energy region (>250 keV), so there are
large differences between the decay energies to the favored band and to the low-lying band.
This would enhance the influence of decay energy and hence reduce the dominant role of the
favored band to some extent. The other is that some structure effects such as Coriolis mixing
bring in the strong mixing of some low-lying states with the favored state. This would reduce
the structure advantages of the favored band and hence the intensity to the favored band. The
typical example is the α-decay of 249Bk from the 7/2+ g.s. to four rotational bands in 245Am.
The new decay-spectroscopy experiment by Ahmad et al [44] suggests that the intensity to
the g.s. rotational band 5/2−[523] is as large as 96.816% while the intensity to the favored
rotational band 7/2+[633] is only about 2.8%. The similar feature is also seen in the α-decay
of 243,245,247Bk, but it is less considerable [46]. Multi-channel calculations were further
extended for the α-decay of odd-mass Bk isotopes from their ground states to more than one
rotational band in the daughter Am nuclei [138]. The Pα factor reveals the structure differ-
ences between parent and daughter states, so it is expected to vary with different rotational
bands in daughter nuclei for one α-decay. For the favored rotational bands, the Pα factor is
fixed at Pα=0.18 for all the systems, which has been determined in the previous systematic
calculations for heavy odd-mass nuclei [109]. Considering the astonishing similarity of the α
decays from 243,245,247Bk, one can simply take the same preformation factor for one certain
rotational band. That is, one obtains Pα=0.0038 for all the g.s. rotational bands 5/2−[523]
and Pα=0.044 for all the second rotational bands 5/2+[642]. In the α decay of 249Bk, the
Pα factor is deduced as Pα=0.034 for the g.s. rotational band 5/2+[642]. This Pα factor for
the g.s. rotational band is significantly larger than in the cases of 243,245,247Bk. This confirms
that there exists an admixture of the favored 7/2+[633] state and the g.s. band in 245Am. In
the calculations, all the partial waves with ℓ�8 and with ℓ�9 are, respectively, considered
for parity-unchanged and parity-changed transitions.

For the α-decay of 243,245,247Bk, the details can be found in table 1 of [138]. The
calculated b.r. agree well with the available experimental data. The standard deviation of
these calculations for 32 b.r. is evaluated as

log BR BR 31 0.224,i
i i

1
32

10 expt calc
2 1 2s = å =={ [ ( )] } which means that the α-decay fine
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structures for these three Bk emitters is reproduced within a factor of about 1.67. For the α-
decay of 249Bk, the details can be found in figure 2 of [138]. The calculated b.r. by the
MCCM show good agreement with the experimental data, generally within a factor of 2. In
conclusion, the coupled-channels calculations of the MCCM give a robust and precise
description of the α-transitions to the favored and unfavored rotational bands. Despite this,
the correlation of final rotational bands is beyond the scope of the calculations, which requires
suitable theoretical schemes. Efforts towards this are still needed.

6. Vibrational even–even nuclei

The so-called vibrational nuclei have zero or a small quadrupole deformation and the first
excited excited 2+ state has an energy of several hundreds of keV, i.e. much higher than for
well deformed rotational nuclei. For this reason the α-transitions to higher states have
practically vanishing decay widths.

The microscopic treatment of α-transitions to vibrational states in even–even nuclei
within the Random Phase Approximation was given in [139–141]. Later on, the coupled
channels analysis was performed in [142]. Here we summarize the main results. Let us
consider an α-decay process P D J a +( ) , where J denotes the spin of the rotational state
of an even–even nucleus, which in our case can be J=0, 2. We describe the α-core
dynamics by using the stationary Schrödinger equation (2.5) where the role of the core
coordinate is played by the quadrupole vibrational collective coordinate ξD=α2. The
Hamiltonian describing the α-decay is given by equation (2.6), where the interaction α-core
potential is given by equation (2.23), i.e.

V V RR, , , 6.12
0,2

2åa a= W
l

l l
=

( ) ( ) ( ) ( )

with an angular part given by
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The monopole part of the interaction is given by the same ansatz as in equation (2.22).
Concerning the λ=2 formfactor, it is given by the linear term of the nuclear surface
expansion, i.e.
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The wave function is given similarly to the superposition (5.2), i.e.
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where ΦJ is the Jth eigenstate of the vibrational Hamiltonian HD(α2).
By using the orthonormality of angular functions entering the superposition (6.4), one

obtains in a standard way the coupled system of differential equations for radial components
(2.9), where the coupling matrix is given by (2.10). Only off diagonal matrix elements have
non-vanishing values, given by
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and depending upon a new constant C v 4v 2 2 2 0a p= F F⟨ ∣∣ ∣∣ ⟩ .
In [142], intensities and HFs for α-transitions to 2+ states in even–even nuclei are

investigated. The fine structure mainly depends upon the vibrational parameter Cv, defining
the coupling strength between the two considered channels with J=0,2. Thus, in order to
simplify the calculation, a value va=1 was considered in equation (2.22), corresponding to a
‘pure’ α-cluster model. The α-decay fine structure was analyzed for those emitters with the
known value of the intensity (2.28). Let us mention that the experimental data follows the rule
(2.41), i.e.

E4.361 0.924, 0.774. 6.6exp 2 s= + = ( )

The calculations showed that this quantity can be reproduced for vibrational nuclei only
by considering a strong repulsive core c=2000MeV fm−2, at variance with rotational
emitters where it used a soft repulsion [59]. By using only one parameter Cv, it was possible
to reproduce most of the experimental values exp for vibrational emitters. The results of these
calculations are given in table 1 of [142] for Z=76, K, 90 even–even isotope chains. It is
interesting to point out that the inverse of the vibrational coupling strength 1/Cv is propor-
tional with the logarithm of the squared HF for all analyzed transitions, as it is shown in
figure 8. Here the solid line represents the corresponding fit, i.e.

C1 49.122 log HF , 15.636. 6.7v 10
2 s= =( ) ( )

In [142] it is shown that this relations allows one to predict the fine structure for several α-
decays from vibrational nuclei by using the following relation

Figure 8. The inverse of the vibrational coupling parameter versus the logarithm of the
experimental HF. The parabola is the fit given by (6.7). Adapted figure with permission
from [142], Copyright (2007) by the American Physical Society.
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C P P1 49.122 log . 6.8v2 10 2 0 = - ( ) ( )

The results for Z=76,78,80,84,86,88,90 isotope chains are given in table 2 of [142].

7. Coherent state model (CSM)

The CSM was proposed in [143, 144] as a tool to describe in a unified way the spectra of
vibrational, transitional and rotational nuclei. Within this model, the surface vibrations of a
deformed nucleus are treated by using an exponential superposition of boson operators,
describing the dynamics of the nuclear surface [145, 146]. The model was later extensively
developed in [147, 148] for the description of low-lying as well as high spin states in nuclei,
including isospin degrees of freedom (for a review, see [149]).

The ground state band in the even–even axially deformed daughter nucleus is given by
the following ansatz

d P e 0 , 8.1J
g

J
g

M
J d b b

0 20 20j = -∣ ⟩ ( ) ˆ ∣ ∣ ⟩ ( )( ) ( ) ( )†

where J
g ( ) denotes the normalisation, PMK

Jˆ is the standard angular momentum projection
operator, b2μ defines the boson operator describing surface oscillations and d is the CSM
deformation parameter, proportional to the standard quadrupole deformation d=κβ2 [150].
By changing this parameter it becomes possible to describe in an unified way vibrational,
transitional and rotational spectra, as can be seen from figure 9, where we plotted the
expectation value of the harmonic Hamiltonian on the projected functions (8.1)

Figure 9. The expectation value of the harmonic Hamiltonian on the projected
functions (8.2) versus the deformation parameter d.
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E b b , 8.2J J
g

J
g

2 2åj j=
m

m m⟨ ∣ ∣ ⟩ ( )( ) † ( )

versus d. For an odd-mass nucleus, the state of total angular momentum I and projection M is
projected from the product between the coherent state and a given spherical s.p. state ψj,
where j is a shorthand notation for all of the quantum numbers of the state, that is

d P e X0 , 8.3IM Ij M
I

j
d b b

J
I
Jj

J
g

j IM0 20 20 åy j yF = = Ä-( ) [ ∣ ⟩] [ ] ( )( ) ( )†

where the amplitudes are given in [151].

7.1. Even–even emitters

Here we will summarize the results obtained in [150] and in the review [61] for even–even
emitters. Let us consider an α-decay process connecting the g.s. to an excited level
P D J a +( ) , where J denotes the spin of the state (8.1) Thus, the channel is defined by the
spin c=J and the core-angular harmonic is given by

b b Y, , 8.4J J
g

J2 2 0 jW = Ä W( ) [ ( ) ( )] ( )( )

where R≡(R,Ω) denotes the distance between the centers of the two fragments. The
interaction potential between the α-particle and CSM core is described by the QQ ansatz
(2.23), where the core quadrupole operator is given by

Q b b a b b b b . 8.52 2 2 2 2 2 2 2 2= + + Ä + Äm m m a m m˜ [( ) ( ) ] ( )† † †

The matrix element of the α-core coupling entering equation (2.9) is proportional to the
reduced matrix element of the QQ interaction [143]

V b

C R R
V R

R JJ
Q Y Y Y
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Notice that the effective α-daughter coupling strength

C C a d1
2

7
, 8.70= - a

⎛
⎝⎜

⎞
⎠⎟ ( )

depends linearly on the deformation parameter.
In [61], an analysis of even–even emitters with known α-decay half-lives, fulfilling the

vibrational/rotational condition within an error of 10% for the first four excited states was
performed. First, the CSM deformation parameter d was determined by fitting four exper-
imental energy levels EJ, for each nuclide where the data was available. The α-daughter
coupling strength C defined by equation (8.7) was obtained from the reproduced values of the
α-decay intensity 2 (2.28). The results are given in figure 10 as a function of the CSM
deformation parameter. It is important to mention that the obvious linear correlation with a
negative slope is predicted by the CSM model in equation (8.7). We also notice the strong
correlation of the coupling strength with the reduced width, characterizing the α-clustering
probability (proportional to the spectroscopic factor), also seen in figure 10.

The computed intensities J (2.28) are given in [61], and the corresponding SFs (2.35)
are shown in figure 11. Here we used the indices i=1, 2, 3 to denote J=2, 4, 6 states,
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respectively. The theoretical intensities were calculated by means of the linear dependence
(8.7) between the α-daughter strength and deformation parameter d. The computed intensities
for J=4 are described within a factor less than 3, except Pu region. Let us mention that the
logarithms of HFs, given by equation (2.30), have a similar behavior.

The α-decay spectrum is a very sensitive tool for the investigation of nuclear structure.
Thus, the aforementioned maximum of the HF, or equivalently, the maximum of the intensity

J for the 4+ state in the Pu region evidenced in [59] was recently related to the two-neutron
separation energy, in connection to a deformed subshell corresponding to N = 142 [152]. This

Figure 10. The α-core coupling strength versus the CSM deformation parameter and
versus the reduced width multiplied by 100. The data are taken from [61].

Figure 11. Panel (a) shows the logarithm of the suppression factor SF1 for transitions to
states with J=2, versus the number labeling each nucleus. The same is true for panel
(b) for J=4 and panel (c) for J=6.
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effect can be seen by representing the experimental values of 4 as a function of the Casten
parameter P N N N Np n p n= +( ) in [61].

Finally, in figure 12 we show the linear correlation between the intensity 2 and the
excitation energy of the daughter nucleus E2 predicted by equation (2.41) for all analyzed
experimental data and the corresponding coupled channels results.

It is interesting to point out that the nuclear collectivity, given by reduced transition
probability B E2; 2 0+ +( ), is closely related to the α-clustering, described by the reduced
g.s. width gs

2g defined by equation (2.17), as can be seen from figure 13. Therefore the largest
α-clustering is characteristic for emitters above double magic nuclei with the smallest B(E2)-
values.

Figure 12. The intensity 2 versus the excitation energy E2 of the daughter nucleus for
experimental data and coupled channels results. The data are taken from [61].

Figure 13. The reduced width multiplied by 100 versus the B(E2)-values (all data is
collected from [46]).
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7.2. Favored odd-mass emitters

Several calculations for the fine structure of the emission spectrum for odd-mass α-emitters
have already been analyzed in this review within the rotator model. We mention here [109],
were a MCCM was used in conjuction with the coupled channels equation in order to
calculate b.r. to excited states for favored transitions in heavy emitters, in the region
93<Z<102. On the other hand, the unfavored g.s.  g.s. α-decay in odd-mass nuclei in
the region Z64 112  was treated in [153], the main purpose being that of investigating
the effect of the difference in the spin and parity of the ground states on the α-particle and
daughter nucleus preformation probability. The calculations were done in the framework of
the extended cluster model, with the WKB penetrability and assault frequency, together with
an interaction potential computed on the basis of the Skyrme SLy4 interaction.

Here we will present the results of [151] concerning favored transitions in odd-mass α-
emitters where the rotational band in which the parent decays is built on a spherical s.p. state
of angular momentum projection 1

2
W ¹ . This band is described by equation (8.3) for an odd

nucleon coupled to good angular momentum with a CSM core.
The decay phenomenon connects the g.s. of the parent nucleus of angular momentum IP

to an excited state of angular momentum I of the daughter and an α-particle of angular
momentum ℓ

P I D I ℓ . 8.8P a +( ) ( ) ( ) ( )

The core-angular components are given by coupling the wave function of the odd-mass
daughter nucleus to the spherical harmonic for the α-particle

b b Y, . 8.9Iℓ I ℓ I M2 2 P P
 W = F Ä W( ) [ ( ) ( )] ( )† †

Each pair of angular momentum values defines a decay channel I ℓ c, =( ) . The coupling
Q2.Y2 term of the matrix is found by the same method as in the previous section to be
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where the curly brackets denote a 9j-symbol. Since the reduced matrix element between the
states of the core is a linear function of the deformation [148], one can still use an effective α-
nucleus coupling strength given by equation (8.7).

The deformation parameter d was obtained by fitting available energy levels relative to
the bandhead. The fitting formula agrees qualitatively with the similar treatment made for the
ground bands of even–even nuclei in [61].

In the [151], the intensities

log , 8.11

i
ℓ

Iℓ

Iℓ
Iℓ

10
0

 



å=

=
G
G
W ( )

were investigated, where I was fixed by the angular momentum of the daughter nucleus in that
particular state and ℓ followed from the triangle rule for the coupling to total angular
momentum IP. Here, the index i I i 1head + - , where Ihead corresponds to the
bandhead spin.

J. Phys. G: Nucl. Part. Phys. 45 (2018) 053001 Topical Review

33



It is sufficient to consider only one ℓ-value for each state. This is due to the fact that the
standard penetrability PIℓ through the Coulomb barrier, defined by the usual factorization
(2.16) decreases by one order of magnitude for each increasing value of ℓ. Since the QQ
interaction conserves parity, one must construct separate resonances of fixed even or odd
parity. The even one follows the sequence of minimal ℓ-values in each channel as ℓ=0, 2, 2,
4, while the odd one follows the sequence ℓ=1, 1, 3, 3. Thus, each basis of four states
having a given parity constructs a separate resonant solution of the system (2.9).

When plotted against the deformation parameter, the values of C obtained by fitting 1
values to experimental data, follow the prediction of equation (8.7) by exhibiting a linear
trend with respect to d, as seen in figure 14 panel (a). This coupling strength can be inter-
preted as a measure of α-clustering because, as it turns out, C shows a linear correlation with

0
2gW with a positive slope, as can be seen in figure 14 panel (b).

In figure 15 we present in separate panels the values of the logarithms of the SFs defined
by equation (2.35), obtained through the method presented above, versus the index number n
found in the first column of table in [151]. It is clearly shown that coupling an α-particle to
the daughter nucleus with the required strength needed to reproduce one value of the intensity
(usually 1 , with the exception of Ac isotopes where 2 is reproduced) allows one to predict
the values of the other intensities within a factor usually less than 3. We note that the
universal decay law treated in [62] and [65] is once again observed in the dependence of the
decay intensities on excitation energies. In figure 16, one notices the strong correlation
between all of the i values and the corresponding excitation energy Ei relative to the
bandhead for each collective structure analyzed in [151].

8. Conclusions

We reviewed the status of the α-decay fine structure theoretical description especially within
the coupled channels approach. The α-decaying states are identified as narrow outgoing
resonances. The α-daughter potential is estimated within the double folding procedure of the

Figure 14. Panel (a) shows the effective α-nucleus coupling strength C versus
deformation parameter d. Panel (b) presents the effective α-nucleus coupling strength C
versus the reduced width 0

2gW for α-transitions to the bandhead. Adapted figure with

permission from [151], Copyright (2016) by the American Physical Society.

J. Phys. G: Nucl. Part. Phys. 45 (2018) 053001 Topical Review

34



nuclear plus Coulomb nucleon–nucleon interaction. We described two equivalent methods to
simulate the Pauli principle, which implies the existence of the α-particle on the nuclear
surface, namely

Figure 15. Logarithms of the suppression factors SF to the first three excited states in
rotational bands as function of the index number n in the first column of table in [151].
Adapted figure with permission from [151], Copyright (2016) by the American
Physical Society.

Figure 16. i values versus excitation energy Ei relative to the bandhead in each case.
Adapted figure with permission from [151], Copyright (2016) by the American
Physical Society.
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(i) the lowest narrow outgoing resonance in the pocket-like potential obtained by adding a
repulsive core and

(ii) the Wildermuth rule applied for states in the original double folding potential.

We analyzed transitions to rotational states described by the rigid rotator model, in even–
even, odd-mass and odd–odd nuclei. The coupled-channels approach including enough decay
channels gives a precise description of the α-decay fine structure observed in heavy deformed
nuclei. The coupled-channels results are also compared with the semiclassical results. It is
found that the semiclassical calculations overestimate the branching ratios (BR) to excited 4+

states by about one order of magnitude for some even–even Pu, Cm, and Cf α-emitters and
fail in explaining the unexpected inversion of branching ratios (i.e. BRI+1 > BRI) in the α

decay of some odd-mass nuclei, while the coupled-channels results show good agreement
with the experimental data. Then we analyzed α-transitions to 2+ vibrational states. Finally
we have shown that the CSM is a powerful tool that can describe in a unified way vibrational,
transitional and rotational nuclei. Our analysis evidenced several features of the α-decay fine
structure

(a) the linear dependence between α-intensities and excitation energy,
(b) the linear correlation between the strength of the α-core interaction, reproducting fine

structure, and spectroscopic factor, and
(c) the inverse correlation between the nuclear collectivity, given by electromagnetic

transitions, and α-clustering.

We conclude that the investigation of the α-decay fine structure is a very powerful tool to
probe nuclear structure details. In particular, the α-decay intensity to high-spin states is
closely correlated with the structure properties of daughter nuclei such as energy spectrum
and deformation. Of course a major challenge for future is the microscopic description of
unfavored α-transitions, where the structure of parent and daughter changes during the
emission process.
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