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Abstract – The coexistence between near-spherical and well-deformed shapes in nuclear systems is
studied by a schematic collective model employing a double-minimum phenomenological potential
with an accounted centrifugal contribution from the kinetic energy. The quantum tunneling
between the two deformation minima depends on the characteristics of the separating barrier and
is gauged by the density probability distribution of deformation in the ground and excited states.
Various degrees of overlap between the two states are associated to shape coexistence with and
without mixing or to simple shape fluctuation phenomena. The effect of the interaction between
deformation configurations on the transition observables is exemplified on the 76Kr nucleus.
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Introduction. – Most nuclei exhibit shape coexis-
tence of some degree [1]. The term is however reserved
to coexistence between few very distinct shapes such as
spherical, prolate, oblate, triaxial which arise as minima
in potential energy curves mapped from microscopic in-
put [2]. The way in which it manifests depends on the
interaction between the competing shapes [3]. Completely
separated deformation configurations lead to distinct non-
interacting band structures with clear characteristics of
their associated shape. Whereas mixed shape configura-
tions are harder to identify from the energy levels, but
are usually accompanied by unusually strong inter-band
transitions [1,4].

The presence of stable microscopic configurations with
different deformations does not necessarily imply a shape
coexistence in its usual sense. Indeed, allowing shape
fluctuations, the distinction between the supposedly co-
existing shapes vanishes in the competition between the
stability of the microscopic configurations and the collec-
tive excitations. Therefore, strong shape fluctuations as
well as shape coexistence with or without mixing are con-
sequences of multiple stable deformation minima in the
energy. The question which arises is what conditions dis-
tinguish these situations and when it is possible to do so.
It is clear that mixing between shapes plays an important
role. As coexisting shapes are described by separate min-
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ima in the potential energy, their mixing can then be un-
derstood as a quantum tunneling through their separating
barrier [3]. The effect of the barrier characteristics on the
mixing through quantum tunneling and shape fluctuations
can be studied with a schematic model based on the col-
lective Bohr Hamiltonian (BH) [5] with a double-well po-
tential in the relevant shape variable.

Theoretical formalism. – For well-deformed nuclei,
the collectiveKπ = 0+ states of angular momentum L can
be described by the approximate differential equation [6]
[
− 1
β4

∂

∂β
β4 ∂

∂β
+
L(L+ 1)

3β2 + v(β)
]

Ψ(β) = εβΨ(β), (1)

for the β shape variable which describes the deviation of
the nuclear shape from sphericity. The simplest potential
which can achieve simultaneous spherical and deformed
minima and satisfy the necessary symmetry restrictions,
is the sextic potential. Due to the scaling properties of
eq. (1), it can be defined using only two parameters as
v(β) = β2 + aβ4 + bβ6. Such a potential has two minima
only if a < 0 and b > 0. Making the change of function
Ψ(β) = ψ(β)/β2 one can express the differential equation
in a one-dimensional Schrödinger form for an effective po-
tential veff (β) = 2/β2 + β2 + aβ4 + bβ6. The centrifu-
gal contribution has the effect of raising and displacing
the spherical minimum of the original potential v(β) (see
fig. 1). Depending on the values of parameters a and b,
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the less deformed minimum can vanish completely in the
effective potential, reducing it to a simple potential well
yet with an un-regular inner wall. This explains why the
β density probability distribution corresponding to a sex-
tic potential with degenerated minima fragments only for
higher barriers which keep the less deformed minimum [7].
Here we consider few cases where instead the effective po-
tential has two degenerated minima. The energies and
wave functions of (1) for such potentials are obtained by
a diagonalization using the basis states

Ψ̃νn(β) =
√

2β− 3
2 Jν(αnβ/βW )

βWJν+1(αn)
. (2)

Jν are Bessel functions of the first kind with ν =√
9/4 + L(L+ 1)/3 and αn are their zeros associated to

the boundary conditions for a suitably chosen limiting
value βW which encompass the relevant part of the po-
tential v(β) [8]. The boundary value βW is determined
so that to achieve a satisfactory convergence for all con-
sidered energy states for a given dimension of the diago-
nalization basis [7]. We calculated the energies and wave
functions for few instances of the sextic potential, whose
effective potential exhibits two degenerated deformation
minima. A summary of the results is given in fig. 1. Un-
der the restriction of degenerate minima, the barrier of
the effective potentials varies from high and thick to low
and thin.

Numerical analysis. – For sufficiently high barriers,
deformation probability distributions for the ground state
and the 0+ excited state are localized in the large and
respectively low deformation minimum of the effective po-
tential. Such a distribution of states’ deformation was also
reported before for high barrier phase transitional poten-
tials [9]. The corresponding states are completely sep-
arated with understandably different scales of rotational
excitations built on them. This scenario is consistent with
the more popular definition of the shape coexistence in
nuclei based on the emergence of non-interacting bands
with strikingly different shape characteristics [1]. The
stand alone nature of the two bands in this approach is
demonstrated also by the extremely small monopole ma-
trix element which is a convenient measure of the states
mixing [4].

As the barrier decreases, both in height and in thickness,
the two deformation configurations start to interact due to
tunneling between the two potential wells. At some point,
both 0+ states exhibit a two-peak probability distribution
with almost mirrored shapes. A similar situation arises
in symmetric double-minimum tunneling used in molecu-
lar physics [10] or in the recent description [11,12] of the
transition from chiral vibration to static chirality in nuclei.
Although in both cases, the peaks are symmetrical due to
the symmetry of the potential. Apparently, the effective
potential from the present case is approximately symmet-
rical with respect to the position of the barrier. However,
the total wave function is not, as well as the mass tensor of

Fig. 1: (Colour online) Effective (solid) and original (dashed)
collective potentials as well as the probability distribution cor-
responding to the first two β excited states are plotted as a
function of β. The energy levels 0+ and 2+ belonging to the
ground band and β excited band are shown using the same
arbitrary units of the potential curves.

the BH kinetic operator. Nevertheless, the clear double-
peak shape suggests that both 0+ states can be described
with a sizable percentage either by a small or by large de-
formation associated to the two effective potential minima.
In this case, one says that two deformation configurations
coexist in the same system as well as in the same state.
The situation depicts the phenomenon of shape coexis-
tence with mixing [1], and is shown to generate extremely
high monopole strengths between mixed states [4]. The
same happens in the present approach due to a maximal
overlap between the deformation probability distributions
of the 0+ states [13]. Note, however, that although shape
mixing will indubitably lead to large monopole strengths,
the vice versa is not necessarily true as there are other
mechanisms with similar effects.

Decreasing further the barrier but still having the
ground state below the barrier, the two deformation prob-
ability peaks of the ground state start to merge, remain-
ing however distinguishable. While for the 0+

1 state, the
two bell profiles remain separated with their heights more
equalized. But when the ground state is above the bar-
rier, the latter starts to be ignored such that one obtains
an extended single-peak deformation probability distribu-
tion for the ground state. The separated peaks for the
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Fig. 2: (Colour online) First-excited β wave function ψ(β) =
β2Ψ(β) corresponding to the cases of fig. 1 given as a func-
tion of the β shape variable. Solid lines are the results of the
present diagonalization, while the dashed lines depicts a freely
oscillating deformation in an effective potential approximated
as a displaced infinite square well.

excited 0+ state are now equally high and can be regarded
as turning points for a β vibration. This is an example of
shape fluctuations usually found in mid-shell nuclei, whose
extensive valence space generates a multitude of coherent
excitations which can be accounted for by a flat collec-
tive potential [14]. The last two cases show the tran-
sition between shape coexisting with strong mixing and
plain shape fluctuation. Although analytically similar, the
two phenomena have distinctive behaviour of key observ-
ables. For example one would expect a sharp decrease
in monopole strength when going from a two-peak to an
extended single-peak deformation probability distribution
for the ground state.

The excited state in this formalism is obviously beyond
the traditional β vibration [15] interpretation. It includes
it as a special case when the separating barrier is ignorably
small and the ground-state wave function loses its double-
peak contour. On the one hand, when the energy of the
second 0+ state is below the barrier, as in the cases 1 and 2
of fig. 1, one cannot speak of a vibration in the classical
sense between the deformations of the two minima. The
potential wells in this situation interact with each other
only by tunneling, which does not have a classical coun-
terpart. On the other hand, one can consider the barrier
as a probabilistic hindering of the free vibration of the
deformation between the inner and outer potential walls.
That is, through tunneling there is still possible to have a
complete oscillation between the two deformation minima.
This interpretation is supported by the persistent presence
of a node in the wave function of the β excited state de-
spite sizable separation between the two potential wells.

This can be observed in fig. 2, where one also make a com-
parison with the β excited wave function corresponding to
a freely fluctuating deformation in an infinite square well
effective potential confined between the intersection points
of the 0+

2 energy level with the exact effective potential.
This reminds us of the confined β-soft model (CBS) [16].
However, the same approximation is employed here for the
effective potential. The comparison between the two wave
functions is meant to show the departure of the present
model from the usual β vibrational picture. The exten-
sion of the exact wave function beyond the boundaries of
the approximated square well is due to its rounded corners
and should not be counted as distinctive features of the
present formalism. The positions of the maximum and
minimum of the wave function is however unaffected by
this approximation. Despite the node in the exact wave
function, the two pictures are quite distinct for the first
two cases. Besides the asymmetry of the positive and neg-
ative values, the exact wave functions for these situations
exhibit also a slower transition between positive and nega-
tive values with a shifted position of the node. As was ex-
pected, a good matching is obtained for the last two cases
where the vibrational energy state is above the barrier.
There are still some differences, which are most obvious
at the edges. More precisely, the critical points of the ex-
act wave function are shifted towards the edges. This is
ascribed to the presence of the minima near the turning
points of the traditional β vibration. The effect subsides
when the minima become shallower, and the barrier can
be safely ignored. Consequently, the vibrational character
of the 0+

2 state is stronger for a higher degree of mixing
between the coexisting deformation configurations.

Experimental realization. – As an illustrative ex-
ample, one considered here the nucleus of 76Kr which is
known for its shape coexisting behaviour [17,18]. Contrary
to its lighter isotopic neighbors which exhibit a prolate-
oblate shape coexistence, one of its coexisting shapes is
predominantly spherical while the other dominant shape
is prolate [17,19–23]. This is well suited for the present
model, which is based on the fact that the nuclear shape
is very stiff against adiabatically decoupled fluctuations of
the γ shape variable [6]. The available data on the ground
band and Kπ = 0+ excited band energies were fitted with
the model’s diagonalization results. The fitted values of
the free parameters a = −0.07314 and b = 1.5062·10−3 fall
into the picture described between the second and third
graphs of fig. 1 for shape coexistence with mixing. The
same parameters are used to calculate the theoretical E2
transition probabilities as well as the monopole strength
connecting the 0+ states using the recipe of ref. [7]. The
agreement between energy levels is satisfactory. The re-
production of the electromagnetic properties is however
the real test of the model. As can be seen in fig. 3, the
low-lying ground-state to ground-state transitions are well
described by theory. The in-band transition 2+

2 → 0+
2

from the excited band is overestimated probably due to
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Fig. 3: (Colour online) Theoretical and experimental [18]
energy spectra for 76Kr including only Kπ = 0+ states. The
energy scale of theoretical predictions is fixed to reproduce the
experimental energy of 2+

1 state, while the theoretical B(E2)
values are scaled to the experimental value of the 2+

1 → 0+
1

transition. Energy levels are given in Mev and B(E2) values
in e2b2.

the higher theoretical excitation energy. An especially
good agreement between theory and experiment is ob-
tained for all the inter-band transitions, whose high values
are the result of a sizable overlap between the wave func-
tions of the two bands. Note that this is achieved mainly
due to a double-peak distribution of deformation in the
ground state. Scaling the β variable so that the position
of the highest peak of the deformation probability dis-
tribution in the ground state is equal to the tabulated
quadrupole ground-state deformation [24], one obtains
the theoretical estimation [7] of the monopole strength
ρ(E0) = 87.14 ·10−3. Comparing it to the measured value
of 79(11) · 10−3 [25], one can see that the good agreement
with experiment for the inter-band transition is also valid
for monopole strength.

Outlook. – In conclusion, we obtained for the first time
a collective ground state with a double peak structure.
The two peaks correspond to the deformation minima of
the effective collective potential and arise due to strong
mixing between the two coexisting deformation configu-
rations. Such a structure of the ground state leads to an
enhanced overlap with the traditional two-peak excited
state of β vibration. This translates into very high inter-
band electromagnetic transitions. The hypothesis was
positively tested on the shape coexisting 76Kr nucleus.
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