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Abstract. A solution for the Bohr-Mottelson Hamiltonian with an anharmonic oscillator potential of sixth
order, obtained through a diagonalization in a basis of Bessel functions, is presented. The potential is consid-
ered to have simultaneously spherical and deformed minima of the same depth separated by a barrier (a local
maximum). This particular choice is appropriate to describe the critical point of the nuclear phase transition
from a spherical vibrator to an axial rotor. Up to a scale factor, which can be cancelled by a corresponding
normalization, the energy spectra and the electromagnetic E2 transition probabilities depend only on a single
free parameter related to the height of the barrier. Investigations of the numerical data revealed that the model
represents a good tool to describe this critical point.

1 Introduction

The motivation for the study developed in [1] and dis-
cussed here started from the paper [2], where an infinite
square well potential in the β variable is proposed to de-
scribe the critical point of the nuclear shape phase transi-
tion from the spherical vibrator to the axial deformed rotor.
On the other hand, it is well-known [2], that for this crit-
ical point the potential has two minima, a spherical and a
deformed one, separated by a maximum. Using the infi-
nite square well, basically the maximum is neglected and
moreover, the potential is completely flat. This choice was
proved to be more appropriate to describe the critical point
of the shape phase transition from the spherical vibrator to
the γ-unstable rotor [3], while here, as one will see, the
introduction of the barrier plays an important role for the
description of the critical point and of its corresponding
shapes.

The field of the nuclear shape phase transitions be-
came richer and richer over the years since the two crit-
ical point models, using an infinite square potential, were
introduced. These are conventionally called E(5) [3] and
X(5) [2], respectively. Most of these studies have been al-
ready reviewed and can be found in the following works
[4–12]. Here the discussion will be restricted to a spe-
cial class of potentials, called sextic oscillator potentials
[13, 14]. The solution proposed in [1] and presented
here is significantly different by the previous ones [15–21]
being more general and recovering important properties
which were unavailable before. For example, the intro-
duction of the barrier and the same depth for the spherical
and deformed minima are new results, which as one will
see brings important information about this critical point.
∗e-mail: buganu@theory.nipne.ro

More details can be found in the original paper [1], while
here we try to attract very briefly the attention on these
results and on the future perspectives for developments of
the subject.

The plan of the work is the following. In the next sec-
tion, we present the model, namely, the Bohr-Mottelson
Hamiltonian [22, 23] with a sextic potential [24, 25]. In
Sec. 3, a discussion on the numerical results is made in-
sisting on the effects introduced by the barrier for the crit-
ical point, while in the last section, the main results of the
study are highlighted.

2 Presentation of the model

The Bohr-Mottelson Hamiltonian [22, 23] is solved for the
critical point of the nuclear shape phase transition from the
spherical vibrator to the axial symmetric rotor by using a
sextic oscillator potential of the form [1]

v(β) = aβ2 + bβ4 + cβ6, (1)

where a, b and c are free parameters. More precisely, the
potential (1) is involved in the β equation, which in this
case is:
[
− 1
β4

∂

∂β
β4 ∂

∂β
+

L(L + 1)
3β2 + v(β)

]
Ψ(β) = ϵβΨ(β). (2)

Here, by L and ϵβ are denoted the total angular momentum
and energy. For the energy, a scaling property can be used,

ϵβ(a, b, c) = a1/2ϵβ(1, ba−3/2, ca−2), (3)

which is useful when the energy is normalized to the en-
ergy of the first excited state of the ground band and that
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Figure 1. The potential (7) as a function of the y variable for
different values of q. The picture is taken from Ref. [1].

because in this case a1/2 vanishes. For this scaling proce-
dure, the potential (1) can be rewritten as:

v(β) = β2 + µβ4 + νβ6. (4)

According to Ref. [2], the potential for the critical point
has to degenerated minima, a spherical and a deformed
one. By imposing this condition for the potential (4), one
gets

v(β) = β2 − 2qβ4 + q2β6, (5)

where q is a free parameter related to the height of the
barrier. For numerical calculations it is useful to introduce
the change of variable y =

√
qβ, which transforms Eq. (2)

in:
[
− ∂

2

∂y2 −
4
y

∂

∂y
+

L(L + 1)
3y2 + v(y)

]
Ψ(y) = EΨ(y), (6)

with the potential

v(y) =
1
q2

(
y2 − 2y4 + y6

)
, (7)

and energy E = ϵβ/q. The potential (7) is plotted in Fig. 1
for different values of q. One can see that the barrier in-
creases for q → 0, while for large values of q the barrier
vanishes recovering the infinite square well limit.

Concerning Eq. (6), it is solved by expanding the wave
function in an orthogonal basis [24, 25]:

ΨLk(y) =
nmax∑

n

Ak
nΨ̃νn(y), (8)

where

ν =

√
9
4
+

L(L + 1)
3

, (9)

while nmax → ∞ and k = nβ + 1. Here Ψ̃νn(y) are solu-
tions of the same equation, but corresponding to an infinite
square well potential:

ṽ(y) =


0, y ≤ yW ,

∞, y > yW .
(10)

The eigenvalues are obtained by diagonalizing the corre-
sponding Hamiltonian matrix and truncating for an nmax

which gives a very good convergence [1]:

Hnm =

(
αn

yW

)2
δnm +

2
∑3

i=1 vi (yW )2i I(ν,i)
nm

q2Jν+1(αn)Jν+1(αm)
, (11)

where v1 = v3 = 1 and v2 = −2. The computing of the
integrals

I(ν,i)
nm =

∫ 1

0
x2i+1Jν(αnx)Jν(αmx)dx, x = y/yW , (12)

can be consistently expedited by employing some recur-
rence relations [24, 25]. The boundary yW is fixed such
that to obtain a certain minimal convergence of the diag-
onalization results for all considered states as its value is
increased. The convergence radius ϵ = E(yi+1

W ) − E(yi
W )

for yi+1
w > yi

W increases as one consider higher exited
states. Therefore, the minimum precision, which in the
present calculations is taken ϵ = 10−7, is imposed on the
highest exited state considered in numerical calculations.
In this way, the energy for the lower states is automati-
cally attained with a higher precision. The final boundary
value yW encompass the relevant part of the original sextic
potential, being considerably larger than the intersection
point between the highest energy level and the sextic po-
tential. As the total wave function is localized in one of
the potential wells, before the outer wall of the potential,
the boundary value once again covers it completely.

The model developed in [1] has been applied to ana-
lyze the shape of the nucleus as a function of the barrier
in the critical point of the shape phase transition from the
spherical vibrator to the axial rotor. Also, some numeri-
cal applications for the experimental data have been done.
More details about these are shown in the next section.

3 Numerical results and applications

In this preliminary study [1], the energies are calculated
only for the ground and β bands, while those for the γ
band are part from a future work is being more difficult
to calculate in the frame of the present model. These en-
ergies, normalized to the energy of the first excited state
of the ground band, are plotted in Fig. 2 as a function of
log10 q. One can observe that for large values of q, the en-
ergy spectra correspond to the X(5)-β6 model [26], while
for small values the limit of SU(3) is recovered. These nu-
merical data can be used to find candidate nuclei for the
model. A great curiosity, by starting this study, was to
check the way in which the height of the barrier influences
the shape of nucleus in the critical point. The introduc-
tion of the barrier, as can be seen from Fig. 3 and Fig. 4,
changes dramatically the density probability distribution
as a function of the deformation variable. For example, the
density probability distribution for the ground state, in the
case of the infinite square well potential, has a symmet-
ric shape centered close to the middle of the potential, it
has a large width, while, by introducing the barrier and in-
creasing it, one can see from Fig. 4, that the peak becomes

2

EPJ Web of Conferences 194, 01007 (2018) https://doi.org/10.1051/epjconf/201819401007
NSRT18



Figure 1. The potential (7) as a function of the y variable for
different values of q. The picture is taken from Ref. [1].

because in this case a1/2 vanishes. For this scaling proce-
dure, the potential (1) can be rewritten as:

v(β) = β2 + µβ4 + νβ6. (4)

According to Ref. [2], the potential for the critical point
has to degenerated minima, a spherical and a deformed
one. By imposing this condition for the potential (4), one
gets

v(β) = β2 − 2qβ4 + q2β6, (5)

where q is a free parameter related to the height of the
barrier. For numerical calculations it is useful to introduce
the change of variable y =

√
qβ, which transforms Eq. (2)

in:
[
− ∂

2

∂y2 −
4
y

∂

∂y
+

L(L + 1)
3y2 + v(y)

]
Ψ(y) = EΨ(y), (6)

with the potential

v(y) =
1
q2

(
y2 − 2y4 + y6

)
, (7)

and energy E = ϵβ/q. The potential (7) is plotted in Fig. 1
for different values of q. One can see that the barrier in-
creases for q → 0, while for large values of q the barrier
vanishes recovering the infinite square well limit.

Concerning Eq. (6), it is solved by expanding the wave
function in an orthogonal basis [24, 25]:

ΨLk(y) =
nmax∑

n

Ak
nΨ̃νn(y), (8)

where

ν =

√
9
4
+

L(L + 1)
3

, (9)

while nmax → ∞ and k = nβ + 1. Here Ψ̃νn(y) are solu-
tions of the same equation, but corresponding to an infinite
square well potential:
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Figure 2. The energies, normalized to the energy of the first
excited state of the ground band, plotted as a function of log10 q.
This picture is taken from [1].

very narrow and it is mostly centered around the deformed
minimum. Also, the two peaks for the first state of the β
band are sensitive to the height of the barrier. The second
peak decreases with the increase of the barrier, while the
first peak prefers the spherical minimum. Moreover, from
Fig. 4, panel (f), one can observe that three peaks show up.

One must remind here, that we are dealing with a
radial-like equation, which in comparison to well stud-
ied one-dimensional double well potential does not con-
tain the parity component which doubles up the spectrum
of one of the wells when the barrier goes to infinity. It is
then incorrect to consider the two wells of the sextic po-
tential as separate when the barrier is very high. In the
present case, the ground state rotational sequence is al-
ready localized in the deformed minimum. When the bar-
rier is sufficiently high the excited rotational sequence be-
comes completely localized in the spherical minimum due
to the quantum tunneling effect. At an infinite height of
the barrier both rotational sequences recover the symmet-
rical rigid rotor spectrum I(I + 1)/(2J), where J is the
moment of inertia which is proportional with the square of
the average deformation ⟨β⟩2. Whereas the ground band
states being localized in the deformed minimum have a
finite non-zero deformation, the β excited rotational band
will have a mean deformation asymptotically going to zero
as the barrier is further increased. Therefore, in the latter
case, the β excited energy band goes to infinity.

Taking into account the above results, on can conclude
that the barrier brings new significant information at least
regarding the energy spectra and the shape for this criti-
cal point, things which otherwise are unavailable. Thus,
neglecting the barrier does not represent a good approxi-
mation, as has been thought so far.
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Figure 3. The density probability distribution as a function of
the β variable for the ground state (0+g ) and for the first state of
the β band (0+β ) for the infinite square well potential.

Because in Fig. 4, due to the height of the barrier,
the density probability distribution has non-zero values for
both minima, we asked ourself is a mixing or a coexis-
tence of the two shapes show up here. We have looked
in literature for other signatures related with this behav-
ior and we have found [27] that usually strong monopole
transition probability ρ2(E0) could be connected with co-
existing shapes having different deformations. Therefore,
we have calculated [1] the monopole transition matrix ele-
ment between the ground state and the head of the β band
and we have found large values for this when the barrier is
high enough. The result is shown in Fig. 5.

Some numerical applications for experimental data
have been made in [1]. Also, other two papers on this
subject have been published in the meantime [28, 29] with
new interesting results for the critical point of the nuclear
shape phase transition from the spherical vibrator to the
axial symmetric rotor. The diagonalization method dis-
cussed here can be easily extended for more complex poly-
nomial potentials in the β variable or to take into account
other γ axial deformations.

4 Conclusions

The Bohr-Mottelson Hamiltonian with a sextic potential
is diagonalized in a basis of Bessel functions of the first
kind. Using a scaling procedure, finally, the eigenvalues
depend only on a free parameter related with the height of
the barrier. The energy spectrum is sensitive to the height
of the barrier, therefore, one can conclude that neglecting
the barrier is not a really good approximation.

Analyzing the density distribution probability for the
ground state and for the first excited state of the β band,
but also the monopole transition probability between these
two states, one can see how the barrier influences the de-
formation of the ground and excited states and moreover,
the fact that these states could present shape coexistence
signatures.

From these preliminary results, one can conclude that
the introduction of the barrier has to be taken into account
for a better description of this critical point. Further stud-
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Figure 4. The potential and the absolute values for the 0+g , 2
+
g and 0+β energy levels are given in the same arbitrary units for the critical

values qgc (c) and qβc (d). The critical values are pointed out in the corresponding contour plots with a white horizontal line. The
probability distribution y-dependent profiles for the ground state and the β band head state are shown in figures (e) and (f). This picture
is taken from [1].

Figure 5. Monopole transition probability in units of
(

3
4π

)2
Z2β4

M
as a function of log10 q. This picture is taken from [1].

ies, as relaxing the degeneracy between the spherical and
deformed minima, introduction of the γ band, adding octic
or decadic terms to the potential are in preparation. Also,
the model has to be applied for a large number of exper-
imental data, in order to identify experimental realisation
of this shape phase transition with a barrier in the critical
point.

This work was supported by a grant of Ministry of Research and
Innovation, CNCS - UEFISCDI, project No. PN-III-P1-1.1-TE-
2016-0268, within PNCDI III.
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