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Abstract

A stability and bifurcation analysis is undertaken in a neighbor-
hood of the positive equilibrium of a tourism model with time delay.
Choosing the time-delay as bifurcation parameter, a Hopf bifurcation
analysis is undertaken, using center manifold reduction and normal
form theory. As a result, the critical values of the delay are found
which are responsible for the occurrence of oscillatory behavior in the
system. Numerical simulations are presented to substantiate the the-
oretical results.
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1 Introduction

Nowadays the tourism industry has been expanded at global scale well be-
yond any prediction made in the past and became a well established industry
alongside the traditional ones. It is an activity done by a person or a group
of persons involving movement of people, goods and services from one place
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300223, Timişoara, Romania; Academy of Romanian Scientists, Splaiul Independenţei 54,
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to another over geographical distributed areas [1]. The other side of the
coin is linked to the negative impact over the the natural environment and
resources. These must be kept under a close eye by all the factors involved
in this industry. In order to study, analyze and predict the behavior of the
factors describing this complex system, an efficient approach is provided by
mathematical modeling.

Casagrandi and Rinaldi [2] introduced a minimal model containing the
core features of several systems with three main elements: number of tourists,
quality of the environment and tourist facilities. The findings show that sus-
tainable and profitable tourism is a reachable goal as long as the economic
agents expand carefully while observing an environmental friendly policy.
Also, the link between sustainability and bifurcation theory is highlighted.

The minimal model of Casagrandi and Rinaldi was later investigated
and exteded by Lacitignola et al. [3] and Wei et al. [4]. Lacitignola et
al. analyzed its implementation for a real tourist destination taking into
consideration the two main tourist categories (mass and eco-tourists). The
results are presented in terms of bifurcation theory. Wei et al. presented
a stability analysis, where various scenarios are analyzed having different
investment parameters. More recently, Afsharnezhad et al. [1] studied the
existence of transcritical, pitchfork and saddle-node bifurcations of a similar
mathematical model with the coexistence of two main tourist classes.

In this paper, based on the existing minimal model of a given generic
touristic site [2], we introduce a discrete time delay in the description of the
number of tourists, with the aim of studying its effect in terms of bifurcation
and normal form theory.

2 Mathematical model

The minimal model for a generic site has three variables as follows: x1(t)
the number of tourists at time t, x2(t) stands for the quality of the natural
environment and x3(t) is the capital flow of the tourist activities and should
be dissociated from the flow of offered services for tourists. A two way
positive influence between tourists (x1(t)) and capital flow (x3(t)) can be
identified. At the same time, they influence in a negative manner the quality
of the natural environment, but the upside of this is the increased number
of tourists.

In [2], the rate of change of tourists is considered equal to the product
between the attractiveness of the site and the number of tourists:

ẋ1(t) = x1(t)A (x1(t), x2(t), x3(t)) .
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The attractiveness A(x1, x2, x3) is the algebraic difference between the ab-
solute attractiveness and a reference value a [2]:

ẋ1(t) = x1(t)

[
g1(x2(t)) + g2

(
x3(t)

x1(t) + 1

)
− αx1(t)− a

]
where α > 0 is the congestion parameter and the functions f1 and f2 are
given by:

gi(x) = µi
x

ϕi + x
(1)

where µi, ϕi > 0.

The rate of change of the environment is given by [2]:

ẋ2(t) = rx2(t)

(
1− x2(t)

K

)
− x2(t)(ηx3(t) + γx1(t))

where the first term represents the quality of environment in the absence of
tourists and capital and the second term is the flow of damages induced by
tourism. The parameter r > 0 is the net growth rate, K > 0 is the quality of
the environment in the presence of all civil and industrial activities (except
tourism) of the generic site. The two parameters η, γ are positive. We
assume that the quality of the environment at time t, x1(t), depends on the
number of past tourists:

ẋ2(t) = rx2(t)

(
1− x2(t)

K

)
− x2(t)(ηx3(t) + γx1(t− τ)),

where the positive parameter τ is the time delay.

The rate of change of the capital flow is given by [2]:

ẋ3(t) = εx1(t)− δx3(t),

where the first term is the investment flow and the second one is the de-
preciation flow. The positive parameter ε is the investment rate and δ is
related to the degradation of tourist structures thought to be very slow. We
assume that the capital flow at time t, x1(t), depends on the number of past
tourists:

ẋ3(t) = εx1(t− τ)− δx3(t),

where the positive parameter τ is the time delay.
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As a summary of the aforementioned considerations, the associated mathe-
matical model of a generic touristic site is given by:

ẋ1(t) = x1(t)A (x1(t), x2(t), x3(t))

ẋ2(t) = rx2(t)

(
1− x2(t)

K

)
− x2(t)(ηx3(t) + γx1(t− τ))

ẋ3(t) = εx1(t− τ)− δx3(t)

(2)

Besides the following trivial equilibrium states for system (2):

S0 = (0, 0, 0), S1 = (0,K, 0), S2 = (x∗, 0,
ε

δ
x∗),

where x∗ = r
(
η εδ + γ

)−1
, there exists at least one strictly positive equilib-

rium state S+ if and only if the following equation has at least one strictly

positive root x10 in the interval
(

0, δr
ηε+γδ

)
:

s3x
3 + s2x

2 + s1x+ s0 = 0, (3)

where:

s3 = Ka1a2α,
s2 = −αδ(ra2a3 −Ka1ϕ2) +Ka1a2(a− µ1K)−Ka1µ2ε,
s1 = −αa3rδ2ϕ2 − a(a3a2rδ −Ka1δϕ2) + a3rδεµ2 + µ1K(rδa2 − a1δϕ2),
s0 = (µ1K − aa3)rδ2ϕ2

and

a1 = ηε+ γ1δ, a2 = δϕ2 + ε, a3 = ϕ1 +K.

In this case, the coordinates of the positive equilibrium are S+ = (x10, x20, x30),
where

x20 =
k(δr − (ηε+ γδ)x10)

δr
, x30 =

εx10
δ
. (4)

3 Hopf bifurcation at the positive equilibrium

Considering the positive equilibrium S+ = (x10, x20, x30) and carrying out
the translation y1(t) = x1(t)− x10, y2(t) = x2(t)− x20, y3(t) = x3(t)− x30,
we obtain: 

ẏ1(t) = f1(y1(t), y2(t), y3(t)),

ẏ2(t) = f2(y1(t− τ), y2(t), y3(t)),

ẏ3(t) = f3(y1(t− τ), y2(t), y3(t)),

(5)
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where

f1(y1, y2, y3) =(y1 + x10)
[ µ1(y2 + x20)

y2 + ϕ2 + x20
+

µ2(y3 + x30)

y3 + ϕ2y1 + ϕ2(x10 + 1) + x30

− αy1 − αx10 − a
]

f2(y1, y2, y3) =− (y2 + x20)
( r
K
y2 + ηy3 + γy1

)
f3(y1, y2, y3) =εy1 − δy3.

Linearizing (5) at (0, 0, 0)T , we obtain the system:

u̇(t) = Au(t) +Bu(t− τ), (6)

where u(t) = (u1(t), u2(t), u3(t))
T and

A =

 a11 a12 a13
0 a22 a23
0 0 a33

 , B =

 0 0 0
b21 0 0
b31 0 0

 (7)

where

a11 = −x10
[

µ2x30
(ϕ2(x10 + 1) + x30)2

+ α

]
,

a12 = x10

(
µ1

ϕ1 + x20
− µ1x20

(ϕ1 + x20)2

)
,

a13 = x10

(
µ2

ϕ2(x10 + 1) + x30
− µ2x30
ϕ2(x10 + 1) + x30)2

)
,

a22 = − r

K
x20, a23 = −ηx20, a33 = −δ,

b21 = −γx20, b31 = ε.

The characteristic function for (6) is given by:

h(λ, τ) = (λ− a11)(λ− a22)(λ− a33)− (m11λ+m10)e
−λτ , (8)

where

m11 = a12b21 + a13b31, m10 = a12a23b31 − a13a22b31 − a12a33b21.

In what follows, we assume that the following hypothesis is fulfilled:

(H1) : All roots of the polynomial h(λ, 0) are in the left half-plane.
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Necessary and sufficient conditions for the fulfillment of hypothesis (H1)
can be obtained using the Routh-Hurwitz criterion, in terms of inequalities
involving the parameters aii and m1i.

Considering the time delay τ as bifurcation parameter, the following
statements have to be satisfied for the occurrence of a Hopf bifurcation at
the equilibrium state S+:

(S1) : There exists a critical time delay denoted by τ0 such that the
function h(λ, τ0) has a pair of pure imaginary roots λ1,2(τ0) = ±iω and all
the other roots have negative real part;

(S2) : <
(
dλ1,2(τ)

dτ

∣∣∣
τ=τ0

)
6= 0.

To find the critical value τ0 which insures the fulfillment of statement
(S1), we assume that there exists a pair of pure imaginary roots ±iω of the
equation h(λ, τ) = 0. This leads to the equation:

(a11 + a22 + a33)ω
2 − a11a22a33 −m10 cos(ωτ)−m11 sin(ωτ)−

− i
[
ω3 − ω(a22a33 + a11a22 + a11a33) +m11 cos(ωτ)−m10 sin(ωτ)

]
= 0.

Separating the real and imaginary parts, we have:{
(a11 + a22 + a33)ω

2 − a11a22a33 = m10 cos(ωτ) +m11ω sin(ωτ),

ω3 − (a22a33 + a11a22 + a11a33)ω = m10 sin(ωτ)−m11ω cos(ωτ).
(9)

Eliminating sin(ωτ) and cos(ωτ) from (9) we obtain:

ω6 + p4ω
4 + p2ω

2 + p0 = 0, (10)

where

p4 = (a11 + a22 + a33)
2 − 2(a11a22 + a11a33 + a22a33),

p2 = (a11a22 + a11a33 + a22a33)
2 − 2(a11 + a22 + a33)a11a22a33 −m2

11,

p0 = a211a
2
22a

2
33 −m2

10.

Let ω0 be a positive root of (10). The critical value of the delay is:

τ0 =
1

ω0
arccos

(
Q1

Q2

)
(11)

where

Q1 =
[
ω2
0(a11 + a22 + a33)− a11a22a33

]
m10+
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+ ω0

[
ω0(a11a22 + a11a33 + a22a33)− ω3

0

]
m11

Q2 =m2
10 +m2

11ω
2
0

To insure that statement (S2) holds, consider λ = λ(τ) the root of the
equation h(λ(τ), τ) = 0 which satisfies λ(τ0) = iω0. Differentiating with
respect to τ , we have:

dλ(τ)

dτ
=

(m11λ(τ) +m10)e
−λ(τ)τ

3λ(τ)2 − 2q2λ(τ) + q1 −m11e−λ(τ)τ + (m11λ(τ) +m10)τe−λ(τ)τ

(12)
where

q2 = a11 + a22 + a33, q1 = a11a22 + a11a33 + a22a33.

Relation (12) can be written as:

dλ(τ)

dτ

∣∣∣
τ=τ0

=
A1 + iA2

B1 + iB2
(13)

where

A1 = −ω0(ω0m11 cos(ω0τ0)−m10 sin(ω0τ0)),
A2 = ω0(m10 cos(ω0τ0) + ω0m11 sin(ω0τ0)),
B1 = −3ω2

0 + q1 + τ0(ω0m11 sin(ω0τ0) +m10 cos(ω0τ0)),
B2 = −2q2ω0 + τ0(ω0m11 cos(ω0τ0)−m10 sin(ω0τ0)).

(14)

The following notations will be used:

M=<
(
dλ(τ)

dτ

)∣∣∣
τ=τ0

=
A1B1+A2B2

B2
1 +B2

2

, N==
(
dλ(τ)

dτ

)∣∣∣
τ=τ0

=
A2B1−A1B2

B2
1 +B2

2

.

(15)

Hence, the following result is obtained

Proposition 1. If ω0 is a positive root of (10) and M 6= 0 then at τ = τ0
given by (11) a Hopf bifurcation occurs for system (2) in a neighborhood of
the positive equilibrium S+.

4 Stability of the limit cycle

In what follows, the first Lyapunov coefficient will be computed, to obtain
information about the stability of the limit cycle that appears due to the
Hopf bifurcation. We follows the guidelines given in [5, 6, 7, 8]. First we
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transform system (5) with τ = τ0 + µ, µ > 0, where τ0 is the critical value
of the bifurcation parameter, into an equation of the form

ẏt = A(µ)yt +R(µ, yt) (16)

where y = (y1, y2, y3)
>, yt = y(t+ θ), θ ∈ [−τ, 0], and the operators A and

R are defined for φ ∈ C1([−τ0, 0],C3) as follows:

A(µ)φ(θ) =

{
dφ(θ)
dθ , θ ∈ [−τ, 0)
Aφ(0) +Bφ(−τ) , θ = 0

(17)

with A, B are given by (7) and

R(µ, φ(θ)) =

{
(0, 0, 0)> , θ ∈ [−τ, 0)
(F1(µ, θ), F2(µ, θ), F3(µ, θ))

> , θ = 0
(18)

with

F1(µ, θ) =a200m
2
1 + 2a110m1m2 + 2a101m1m3 + a020m

2
2 + a002m

2
3+

+ 3a201m
2
1m3 + a300m

3
1 + a030m

3
2 + a003m

3
3 + 3a120m1m

2
2+

+ 3a102m1m
2
3

F2(µ, θ) =b020m
2
2 + 2b011m2m3 + 2b110m4m2

F3(µ, θ) =0

where
m1 = φ1(0),m2 = φ2(0),m3 = φ3(0),m4 = φ1(−τ)

and

a200 = − 2µ2x30ϕ2

((x10 + 1)ϕ2 + x30)2
− 2α+

2µ2x10x30ϕ
2
2

((x10 + 1)ϕ2 + x30)3

a020 = − 2µ1x10
(x20 + ϕ1)2

+
2µ1x10x20

(ϕ1 + x20)3

a110 =
µ1

x20 + ϕ1
− µ1x20

(ϕ1 + x20)2

a002 = − 2µ2x10
((x10 + 1)ϕ1 + x30)2

+
2µ2x10x30

((ϕ2(x10 + 1) + x30)3

a101 =
µ2

(x10 + 1)ϕ2 + x30
− µ2x30

(ϕ2(x10 + 1) + x30)2
− µ2x10ϕ2

(ϕ2(x10 + 1) + x30)2
+

+
2x10µ2x30ϕ2

(ϕ2(x10 + 1) + x30)3
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a120 = − 2µ1
(x20 + ϕ1)2

+
2µ1x20

(ϕ1 + x20)3

a102 =
2µ2

((x10 + 1)ϕ2 + x30)2
+

2µ2x30
(ϕ2(x10 + 1) + x30)3

+
4µ2x10ϕ2

(ϕ2(x10 + 1) + x30)2
−

− 6x10µ2x30ϕ2

(ϕ2(x10 + 1) + x30)4

a003 =
6µ2x10

((x10 + 1)ϕ2 + x30)3
− 6µ2x10x30

(ϕ2(x10 + 1) + x30)4

a300 =
6µ2x30ϕ

2
2

((x10 + 1)ϕ2 + x30)3
− 6µ2x10x30ϕ

3
2

((x10 + 1)ϕ2 + x30)4

a201 = − 2µ2ϕ2

((x10 + 1)ϕ2 + x30)2
+

4µ2x30ϕ2 + 2x10µ2ϕ
2
2

(ϕ2(x10 + 1) + x30)3
− 6µ2x10x30ϕ

2
2

(ϕ2(x10 + 1) + x30)4

b020 = −2r

k
, b011 = −η, b110 = −γ

The adjoint operator A∗ of A is defined for ψ ∈ C1([0, τ ],C3) as follows:

A∗(µ)(ψ(s)) =

{
−dψ(s)

ds , s ∈ [0, τ)
ψ>(0)A+ ψ>(τ)B , s = τ

(19)

For φ ∈ C1([−τ, 0],C3) and ψ ∈ C1([0, τ ],C3) we define the bilinear
form:

< ψ, φ >= ψ̄(0)>φ(0)−
∫ 0

θ=−τ

∫ θ

s=0
ψ̄>(s− θ)dη(θ)φ(s)ds (20)

where η(θ) = Bδ(θ + τ) for θ ∈ [−τ, 0) and δ is the Dirac distribution.

Using (17) and (19) we obtain:

Proposition 2.

1. An eigenvector φ of A associated to the eigenvalue iω0 is

φ(θ) = meiω0θ, θ ∈ [−τ, 0] (21)

where m = (m1,m2,m3)
> is given by:

m1 = −a12(iω0 − a33),
m2 = b31a13e

−iω0τ0 − (iω0 − a11)(iω0 − a33), (22)

m3 = −a12b31e−iω0τ0 .
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2. An eigenvector ψ of A∗ associated to the eigenvalue −iω0 is:

ψ(s) = le−iω0s, s ∈ [0, τ ], (23)

where l = (l1, l2, l3)
> is given by:

l1 = (iω0 − a22)(iω0 − a33),
l2 = a12(iω0 − a33),
l3 = a12a23 + a13(iω0 − a22).

3. With respect to (20) we have

< ψ(s), φ(θ) >= e11 < ψ(s), φ̄(s) >= e12

< ψ̄(s), φ(θ) >= e21 < ψ̄(s), φ̄(θ) >= e22

where

e11 = ē22 = l̄1m1 + l̄2m2 + l̄3m3 + e−iω0τ0m1(b21l2 + b31l1),

e12 = ē21 = (iω0 + a22)(iω0 + a33)l1 − a12(iω0 + a33)l2−
− a12b31eiω0τ0 l3 − τ0e−iω0τ0(b2l2l1 + b31l1l3).

We consider

P =

(
e11 e12
e21 e22

)−1
=

(
f11 f12
f21 f22

)
and

n1 = f11l1 + f12 l̄1,
n2 = f11l2 + f12 l̄2,
n3 = f11l3 + f13 l̄3

(24)

and
ψ∗(s) = f11ψ(s) + f12ψ̄(s), ψ̄∗(s) = f21ψ(s) + f22ψ̄(s). (25)

Using (21) and (23) we have:

< ψ∗(s), φ(θ) >= 1 < ψ∗(s), φ̄(s) >= 0

< ψ̄∗(s), φ(θ) >= 0 < ψ̄∗(s), φ̄(s) >= 1

In the following, the coordinates of the center manifold Ω0 at µ = 0 will be
defined. We consider

z(t) =< ψ, yt >, w(t, θ) = yt − 2<{z(t)φ(θ)} (26)
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On the center manifold Ω0, w(t, θ) = w(z(t), z̄(t), φ) where

w(z, z̄, θ) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ ... (27)

and z, z̄ are the local coordinates of the center manifold Ω0 in the direction
of φ and ψ, respectively.

For µ = 0, the equation on the center manifold is reduced to:

ż(t) = λ1z(t)+ < ψ,R(w(t, θ) + 2Re{z(t)φ(θ)}) >

that can be rewrite as:

ż(t) = λ1z(t) + g(z(t), z̄(t)) (28)

with

g(z, z̄) = ψ̄(0)>R(w(z, z̄, θ) + 2Re(zφ(θ))).

We expand the function g(z, z̄) on the center manifold Ω0 and obtain:

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
. (29)

Therefore, the following result is obtained:

Proposition 3. For system (5), we have:

g20 = n̄1F120 + n̄2F220 + n̄3F320,
g11 = n̄1F111 + n̄2F211 + n̄3F311,
g02 = n̄1F102 + n̄2F202 + n̄3F302,
g21 = n̄1F121 + n̄2F221 + n̄3F321,

(30)

where n̄1, n̄2, n̄3 are given by (24) and

F120 =
1

2
a200m

2
1 + a110m1m2 + a101m1m3 +

1

2
a020m

2
2 +

1

2
a002m

2
3,

F111 = a200m1m̄1 + a110(m1m̄2 +m2m̄1) + a101(m1m̄3 + m̄1m3)+

+ a020m2m̄2 + a002m3m̄3,

F102 =
1

2
a200m̄

2
1 + a110m̄1m̄2 + a101m̄1m̄3 +

1

2
a020m̄

2
2 +

1

2
a002m̄

2
3,

F220 =
1

2
b020m

2
2 + b011m2m3 + b110m1m2e

−iω0τ0 ,

F211 = b110(m1m̄2e
−iω0τ0 +m2m̄1e

iω0τ0) + b020m2m̄2 + b011(m2m̄3 + m̄2m3),
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F202 =
1

2
b020m̄

2
2 + b011m̄2m̄3 + d110m̄1m̄2e

iω0τ0 ,

F320 = 0, F311 = 0, F302 = 0.

The components of the vectors:

w20 = (w120, w220, w320)
>, w11 = (w111, w211, w311)

>, w02 = (w102, w202, w302)
>

are given by:

w120 = − g20
i ω0

m1 −
ḡ02

3i ω0
m̄1 + E21

w220 = − g20
i ω0

m2 −
ḡ02

3i ω0
m̄2 + E22

w320 = − g20
i ω0

m3 −
ḡ02

3i ω0
m̄3 + E23

w111 =
g11
i ω0

m1 −
ḡ11
i ω0

m̄1 + E11

w211 =
g11
i ω0

m2 −
ḡ11
i ω0

m̄2 + E12

w311 =
g11
i ω0

m3 −
ḡ11
i ω0

m̄3 + E13

w102 = w̄120, w202 = w̄220, w302 = w̄302,

where E1 = (E11, E12, E13)
>, E2 = (E21, E22, E23)

> and

E1 = Q1(F120, F220, F320)
T ,

E2 = Q2(F111, F211, F311)
T ,

Q1 = −(A+ e−2iω0τ0B − 2iω0E)−1,

Q2 = −(A+B)−1.

Proof. The projection of the solution (y1(t), y2(t), y3(t)) of the system (5)
on Ω0 is given by:

y1(t) = m1z(t) + m̄1z̄(t) +
1

2
w120z(t)

2 + w111z(t)z̄(t) +
1

2
w102z̄(t)

2

y2(t) = m2z(t) + m̄2z̄(t) +
1

2
w220z(t)

2 + w211z(t)z̄(t) +
1

2
w202z̄(t)

2

y3(t) = m3z(t) + m̄3z̄(t) +
1

2
w320z(t)

2 + w311z(t)z̄(t) +
1

2
w302z̄(t)

2

with m1, m2, m3 are given by (22).
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The nonlinear part (5) can be written as:

1

2
F20z(t)

2 + F11z(t)z̄(t) +
1

2
F02z̄

2(t) +
1

2
F12z

2(t)z̄(t)

where

F20 = (F120, F220, F320)
>, F11 = (F111, F211, F311)

>

F02 = (F102, F202, F302)
>, F12 = (F112, F212, F312)

>

and the components of F20 and F11 are given above. The components of F21

are:

F121 =a120(m̄1m
2
2 + 2m1m2m̄2) + a102(m̄1m

2
3 + 2m1m3m̄3)+

+
1

2
a003m

2
3m̄3 +

1

2
a200m

2
1m1 + a201(m

2
1m3 + 2m1m3m̄1),

F221 =0, F321 = 0

and a120, a102, a003, a300, a201 are given above.
The relations (30) are obtained using:

g20 = ψ̄>(0)F20, g11 = ψ̄>(0)F11, g02 = ψ̄>(0)F02, g21 = ψ̄>(0)F21

Therefore, we can compute the following parameters [8]:

C(0) =
i

2ω0
(g20g11 − 2|g11|2 −

1

3
|g02|2) +

g21
2

µ2 = −Re(C(0))

M
,

T2 = −Im(C(0)) + µ2N

ω0
,

β2 = 2Re(C(0))

where M and N are given by (15).
The parameter µ2 defined above determines the direction of the Hopf

bifurcation; β2 determines the stability of the bifurcating periodic orbit and
T2 determines the period of the bifurcating periodic orbit.

Proposition 4. (see [8])

1. If µ2 > 0(< 0) the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solution exists for τ > τ0(< τ0).

2. If β2 < 0(> 0) the solutions are orbitally stable (unstable).

3. If T2 > 0(< 0) the period increases (decreases).
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5 Numerical results

In this section, we consider the following values for the system parameters
[2]: r = α = η = γ = ϕc = K = 1; ε = 0.1; δ = 0.1; ϕe = 0.5; a = 5,
µ1 = µ2 = 10.

The coordinates of the positive equilibrium are

S+ = (0.381387, 0.237227, 0.381387).

In the absence of time delay, the equilibrium S+ is asymptotically stable.
If a discrete time delay is included in the mathematical model, the critical
value of delay responsible for the occurrence of a Hopf bifurcation with the
loss of asymptotic stability of S+ is τ0 = 1.9299. We obtain that S+ is
asymptotically stable for τ ∈ (0, τ0) and unstable for τ > τ0.
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Figure 1: Trajectories in the phase planes (x1, x3) and (x1, x2) respectively,
in the case of a discrete time delay τ = 1.8, choosing an initial condition
in a neighborhood of the positive equilibrium S+, which is asymptotically
stable.

6 Conclusions

In the current paper, the sustainable tourism for a generic site was studied
using the bifurcation and normal form theory. We started from an existing
minimal model with three variables: the number of tourists, the quality
of the environment and the capital flow as the framework for the tourists
activities. We assumed that the past tourists have an effect on the number
of present environment and capital flow and therefore the time delay is
introduced.
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Figure 2: Trajectories in the phase planes (x1, x3) and (x1, x2) respectively,
in the case of a discrete time delay τ = 2, choosing an initial condition in a
neighborhood of the positive equilibrium S+, which is asymptotically stable.
An asymptotically stable limit cycle is present.

In the numerical simulations that were done, we notice the presence of
oscillations corresponding to critical values of the bifurcation parameter.

It is worth mentioning that a various approaches of the minimal model,
like including environmental perturbations, can be taken into account. Also,
the tourists memory is one aspect that should be factored in by introducing
the fractional derivative.
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