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Abstract Recently obtained necessary and sufficient conditions for the asymptotic
stability and instability of the null solution of a two-dimensional autonomous linear
incommensurate fractional-order dynamical system with Caputo derivatives are re-
viewed and extended. These theoretical results are then applied to investigate the sta-
bility properties of a two-dimensional fractional-order conductance-based neuronal
model. Moreover, the occurrence of Hopf bifurcations is also discussed, choosing
the fractional orders as bifurcation parameters. Numerical simulations are also pre-
sented to illustrate the theoretical results.

1 Introduction

Due to the fact that fractional-order derivatives reflect both memory and hereditary
properties, numerous results reported in the past decades have proven that fractional-
order systems provide more realistic results in practical applications [7, 12, 15, 16,
23] than their integer-order counterparts.

Regarding the qualitative theory of fractional-order systems, stability analysis
is one of the most important research topics. The main results concerning stabil-
ity properties of fractional-order systems have been recently surveyed in [20, 30].
It is worth noting that most investigations have been accomplished for linear au-
tonomous commensurate fractional-order systems. In this case, the well-known

Oana Brandibur
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Matignon’s stability theorem [24] has been recently generalized in [31]. Ana-
logues of the classical Hartman-Grobman theorem, i.e. linearization theorems for
fractional-order systems, have been recently reported in [19, 33].

However, when it comes to incommensurate fractional-order systems, it is worth
noticing that their stability analysis has received significantly less attention than
their commensurate counterparts. Linear incommensurate fractional-order systems
with rational orders have been analyzed in [27]. Oscillations in two-dimensional
incommensurate fractional-order systems have been investigated in [8, 29]. BIBO
stability of systems with irrational transfer functions has been recently investigated
in [32]. Lyapunov functions were employed to derive sufficient stability conditions
for fractional-order two-dimensional non-linear continuous-time systems [?].

Following these recent trends in the theory of fractional-order differential equa-
tions, necessary and sufficient conditions for the stability/instability of linear au-
tonomous two-dimensional incommensurate fractional-order systems have been ex-
plored in [4, 5]. In the first paper [4], stability properties of two-dimensional sys-
tems composed of a fractional-order differential equation and a classical first-order
differential equation have been investigated. A generalization of these results has
been presented in [5], for the case of general two- fractional-order systems with
Caputo derivatives. For fractional orders 0 < q1 < q2 ≤ 1, necessary and sufficient
conditions for the O(t−q1)-asymptotic stability of the trivial solutions have been
obtained, in terms of the determinant of the linear system’s matrix, as well as the
elements a11 and a22 of its main diagonal. Sufficient conditions have also been ex-
plored which guarantee the stability and instability of the system, regardless of the
choice of fractional orders q1 < q2. In this work, our first aim is to further extend the
results presented in [5] for any q1,q2 ∈ (0,1], by exploring certain symmetries in the
characteristic equation associated to our stability problem. This leads to improved
fractional-order independent sufficient conditions for stability and instability.

As an application, an investigation of the stability properties of a two-dimensional
fractional-order conductance-based neuronal model is presented, considering the
particular case of a FitzHugh-Nagumo neuronal model. Experimental results con-
cerning biological neurons [1, 22] justify the formulation of neuronal dynamics us-
ing fractional-order derivatives. Fractional-order membrane potential dynamics are
known to introduce capacitive memory effects [34], proving to be necessary in re-
producing the electrical activity of neurons. Moreover, [11] gives the index of mem-
ory as a possible physical interpretation of the order of a fractional derivative, which
further justifies its use in mathematical models arising from neuroscience.

2 Preliminaries

The main theoretical results of fractional calculus are comprehensively covered in
[17, 18, 28]. In this paper, we are concerned with the Caputo derivative, which
is known to be more applicable to real world problems, as it only requires initial
conditions given in terms of integer-order derivatives.
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Definition 1. For a continuous function h, with h′ ∈ L1
loc(R+), the Caputo fractional-

order derivative of order q ∈ (0,1) of h is defined by

cDqh(t) =
1

Γ (1−q)

∫ t

0
(t− s)−qh′(s)ds.

Consider the n-dimensional fractional-order system with Caputo derivatives

cDqx(t) = f (t,x) (1)

with q = (q1,q2, ...,qn) ∈ (0,1)n and f : [0,∞)×Rn→Rn a continuous function on
the whole domain of definition and Lipschitz-continuous with respect to the second
variable, such that

f (t,0) = 0 for any t ≥ 0.

Let ϕ(t,x0) denote the unique solution of (1) satisfying the initial condition
x(0) = x0 ∈ Rn. The existence and uniqueness of the initial value problem asso-
ciated to system (1) is guaranteed by the properties of the function f stated above
[9].

In general, the asymptotic stability of the trivial solution of system (1) is not
of exponential type [6, 14], because of the presence of the memory effect. Thus,
a special type of non-exponential asymptotic stability concept has been defined for
fractional-order differential equations [21], called Mittag-Leffler stability. In this pa-
per, we are concerned with O(t−α)-asymptotic stability, which reflects the algebraic
decay of the solutions.

Definition 2. The trivial solution of (1) is called stable if for any ε > 0 there exists
δ = δ (ε)> 0 such that for every x0 ∈Rn satisfying ‖x0‖< δ we have ‖ϕ(t,x0)‖≤ ε

for any t ≥ 0.
The trivial solution of (1) is called asymptotically stable if it is stable and there

exists ρ > 0 such that lim
t→∞

ϕ(t,x0) = 0 whenever ‖x0‖< ρ .

Let α > 0. The trivial solution of (1) is called O(t−α)-asymptotically stable if it
is stable and there exists ρ > 0 such that for any ‖x0‖< ρ one has:

‖ϕ(t,x0)‖= O(t−α) as t→ ∞.

3 Stability and instability regions

Let us consider the following two-dimensional linear autonomous incommensurate
fractional-order system: { cDq1x(t) = a11x(t)+a12y(t)

cDq2 y(t) = a21x(t)+a22y(t) (2)
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where A = (ai j) is a real 2-dimensional matrix and q1,q2 ∈ (0,1) are the fractional
orders of the Caputo derivatives. Using Laplace transform tools, the following char-
acteristic function is obtained

∆A(s) = det(diag(sq1 ,sq2)−A) = sq1+q2 −a11sq2 −a22sq1 +det(A).

where sq1 and sq2 represent the principal values (first branches) of the corresponding
complex power functions [10].

Based on the Final Value Theorem and asymptotic expansion properties of the
Laplace transform [3, 4, 10], the following necessary and sufficient conditions for
the global asymptotic stability of system (2) have been recently obtained [5]:

Theorem 1.

1. Denoting q = min{q1,q2}, system (2) is O(t−q)-globally asymptotically stable if
and only if all the roots of ∆A(s) are in the open left half-plane (ℜ(s)< 0).

2. If det(A) 6= 0 and ∆A(s) has a root in the open right half-plane (ℜ(s)> 0), system
(2) is unstable.

Our next aim is to analyze the distribution of the roots of the characteristic func-
tion ∆A(s) with respect to the imaginary axis of the complex plane. For simplicity,
for (a,b,c) ∈ R3, q1,q2 ∈ (0,1] we denote:

∆(s;a,b,c,q1,q2) = sq1+q2 +asq2 +bsq1 + c.

As in [5], we easily obtain the following result:

Lemma 1. If c < 0, the function s 7→ ∆(s;a,b,c,q1,q2) has at least one positive real
root.

In the following, we assume c > 0 and we seek to characterize the following sets:

S(c) = {(a,b) ∈ R2 : ∆(s;a,b,c,q1,q2) 6= 0, ∀ s ∈ C+,∀ (q1,q2) ∈ (0,1]2}
U(c) = {(a,b) ∈ R2 : ∀ (q1,q2) ∈ (0,1]2, ∃ s ∈ Int(C+) s.t. ∆(s;a,b,c,q1,q2) = 0}
Q(c) = Int

(
R2 \ (S(c)∪U(c)

)
where C+ = {s ∈ C : ℜ(s)≥ 0} and (0,1]2 = (0,1]× (0,1]. Based on Theorem 1
and the previous lemma, the link between the stability properties of system (2) and
the three sets defined above is given by:

Proposition 1. 1. If det(A)< 0, the trivial solution of system is unstable, regardless
of the fractional orders (q1,q2) ∈ (0,1]2.

2. If det(A)> 0, the trivial solution of system (2) is

a. asymptotically stable, regardless of the fractional orders (q1,q2) ∈ (0,1]2 if
and only if (−a11,−a22) ∈ S(det(A)).

b. unstable, regardless of the fractional orders (q1,q2) ∈ (0,1]2 if and only if
(−a11,−a22) ∈U(det(A)).
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c. asymptotically stable with respect to some (but not all) fractional orders
(q1,q2) ∈ (0,1]2 if and only if (−a11,−a22) ∈ Q(det(A)).

Lemma 2. Let c > 0. The sets S(c), U(c) and Q(c) are symmetric with respect to
the first bisector in the (a,b)-plane.

Proof. The statement results from the fact that ∆(s;a,b,c,q1,q2)=∆(s;b,a,c,q2,q1),
for any (a,b,c) ∈ R3 and (q1,q2) ∈ (0,1]2. ut

In the following, we give several intermediary lemmas which are obtained by
generalizing the results presented in [5]. As the proofs are built up in a similar
manner as in [5], they will be omitted.

Lemma 3. Let c > 0, q1,q2 ∈ (0,1], q1 6= q2, and consider the smooth parametric
curve in the (a,b)-plane defined by

Γ (c,q1,q2) :

{
a = cρ1(q1,q2)ω

−q2 −ρ2(q1,q2)ω
q1

b = ρ1(q1,q2)ω
q2 − cρ2(q1,q2)ω

−q1
, ω > 0,

where:

ρ1(q1,q2) =
sin q1π

2

sin (q2−q1)π
2

, ρ2(q1,q2) =
sin q2π

2

sin (q2−q1)π
2

.

The curve Γ (c,q1,q2) is the graph of a smooth, decreasing, convex bijective function
φc,q1,q2 : R→ R in the (a,b)-plane.

Lemma 4. Let c > 0 and q1,q2 ∈ (0,1].

a. If q1 6= q2, the function s 7→ ∆(s;a,b,c,q1,q2) has a pair of pure imaginary roots
if and only if (a,b) ∈ Γ (c,q1,q2).
All the roots of the function s 7→ ∆(s;a,b,c,q1,q2) are in the open left half-plane
if and only if b > φc,q1,q2(a).

b. If q1 = q2 := q, the function s 7→ ∆(s;a,b,c,q1,q2) has a pair of pure imaginary
roots if and only if (a,b) ∈Λ(c,q), where Λ(c,q) is the line defined by:

Λ(c,q) : a+b+2
√

ccos
qπ

2
= 0.

All the roots of the function s 7→ ∆(s;a,b,c,q1,q2) are in the open left half-plane
if and only if a+b+2

√
ccos qπ

2 > 0.

As a consequence of the previous lemma, the following characterization of the
set Q(c) is formulated:

Corollary 1. The set Q(c) in the (a,b)-plane is the union of all curves Γ (c,q1,q2),
for (q1,q2) ∈ (0,1)2, q1 6= q2 and all lines Λ(c,q), for q ∈ (0,1).

Lemma 5. Let c > 0. The region

Ru(c) = {(a,b) ∈ R2 : a+b+ c+1≤ 0}∪{(a,b) ∈ R2 : a < 0, b < 0, ab≥ c}

is included in the set U(c).
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Proof. Let (a,b) ∈ Ru(c). First, let us notice that ∆(1;a,b,c,q1,q2) = a+b+c+1.
Hence, if a+b+c+1≤ 0, it follows that for any (q1,q2)∈ (0,1]2, the function s 7→
∆(s;a,b,c,q1,q2) has at least one positive real root in the interval [1,∞). Therefore,
(a,b) ∈U(c).

On the other hands, if a < 0, b < 0 and ab≥ c, as

∆(s;a,b,c,q1,q2) = (sq1 +a)(sq2 +b)+ c−ab

we see that for s0 = |a|1/q1 > 0, we have ∆(s0;a,b,c,q1,q2) = c− ab ≤ 0. Hence,
for any (q1,q2) ∈ (0,1]2, the function s 7→ ∆(s;a,b,c,q1,q2) has at least one strictly
positive real root. It follows that (a,b) ∈U(c). ut

The following lemma is obtained as in [5]:

Lemma 6. Let c > 0. The region

Rs(c) = {(a,b) ∈ R2 : a+b > 0, a >−min(1,c) , b >−min(1,c)}

is included in the set S(c).

Based on all previous results, the following conditions for the stability of system
(2) with respect to its coefficients and the fractional orders q1 and q2 are obtained:

Proposition 2. For the fractional-order linear system (2) with q1,q2 ∈ (0,1], the
following hold:

1. If det(A)< 0, system (2) is unstable, regardless of the fractional orders q1,q2.
2. Assume that det(A)> 0 and q1,q2 ∈ (0,1] are arbitrarily fixed and q=min{q1,q2}.

If q1 6= q2, let Γ = Γ (det(A),q1,q2), otherwise, if q1 = q2, let Γ = Λ(det(A),q).

(a) System (2) is O(t−q)-asymptotically stable if and only if (−a11,−a22) is in
the region above Γ .

(b) If (−a11,−a22) is in the region below Γ , system (2) is unstable.

3. If det(A)> 0, the following sufficient conditions for the asymptotic stability and
instability of system (2), independent of the fractional orders q1,q2, are obtained:

(a) If a11 < min(1,det(A)), a22 < min(1,det(A)) and Tr(A) < 0, system (2) is
asymptotically stable, regardless of the fractional orders q1,q2 ∈ (0,1].

(b) If Tr(A) ≥ det(A) + 1 or if a11 > 0, a22 > 0 and a12a21 ≥ 0, system (2) is
unstable, regardless of the fractional orders q1,q2 ∈ (0,1].

The fractional-order independent sufficient conditions for the asymptotic stabil-
ity/instability of system (2) obtained in Proposition 2 (point 3.) are particularly use-
ful in the case of the practical applications in which the exact values of the frac-
tional orders used in the mathematical modeling are not known precisely. We con-
jecture that in fact, these conditions are not only sufficient, but also necessary, i.e.
Rs(c) = S(c) and Ru(c) =U(c). The proof of necessity requires further investigation
and constitutes a direction for future research.
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4 Investigation of a fractional-order conductance-based model

The FitzHugh-Nagumo neuronal model [13] is a simplification of the well-known
Hodgkin-Huxley model and it describes a biological neuron’s activation and deac-
tivation dynamics in terms of spiking behavior. In this paper, we consider a mod-
ified version of the classical FitzHugh-Nagumo neuronal model, by replacing the
integer-order derivatives with fractional-order Caputo derivatives of different or-
ders. Mathematically, the fractional-order FitzHugh-Nagumo model is described by
the following two-dimensional fractional-order incommensurate system: cDq1v(t) = v− v3

3
−w+ I

cDq2w(t) = r(v+ c−dw)
(3)

where v represents the membrane potential, w is a recovery variable, I is an external
excitation current and 0 < q1 ≤ q2 ≤ 1. For comparison, a similar model has been
investigated by means of numerical simulations in [2].

Rewriting the second equation of system (3) it follows that:

cDq2w(t) = rd
(1

d
v+

c
d
−w
)
= φ(αv+β −w)

where φ = rd ∈ (0,1), α =
1
d

and β =
c
d

. Thus, system (3) is equivalent to the
following two-dimensional conductance-based model:{

cDq1v(t) = I− I(v,w)
cDq2w(t) = φ(w∞(v)−w)

(4)

where I(v,w) = w− v+
v3

3
and w∞(v) = αv+β is a linear function.

4.1 Branches of equilibrium states

For studying the existence of equilibrium states of the fractional-order neuronal
model (4), we intend to find the solutions of the algebraic system{

I = I∞(v)
w = w∞(v)

where

I∞(v) = I(v,w∞(v)) = w∞(v)− v+
v3

3
= (α−1)v+

v3

3
+β .
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We observe that I∞ ∈ C1, lim
v→−∞

I∞(v) = −∞ and lim
v→∞

I∞(v) = ∞. Moreover,

I′∞(v) = v2 +α − 1. Therefore, we can distinguish two cases: α > 1 and α < 1.
The case α > 1 has been studied in [4] and corresponds to the existence of a unique
branch of equilibrium states. In this paper, we will focus on the case when α < 1.

For α < 1, the roots of the equation I′∞(v) = 0 are vmax = −
√

1−α and vmin =√
1−α . The function I∞ is increasing on the intervals (−∞,vmax] and [vmin,∞) and

decreasing on the interval (vmax,vmin). We denote Imax = I∞(vmax), Imin = I∞(vmin).
The function I∞ : (−∞,vmax] → (−∞, Imax], is increasing and continuous, and

hence, it is bijective. We denote I1 = I∞|(−∞,vmax] the restriction of function I∞ to
the interval (−∞,vmax] and consider its inverse:

v1 : (−∞, Imax]→ (−∞,vmax], v1(I) = I−1
1 (I).

The first branch of equilibrium states of system (4) is composed of the points of
coordinates (v1(I),n∞(v1(I))), with I < Imax.

The second and the third branch of equilibrium states are obtained similarly:

I2 = I∞|(vmax,vmin), v2 : (Imin, Imax)→ (vmax,vmin), v2(I) = I−1
2 (I)

I3 = I∞|[vmin,∞), v3 : [Imin,∞)→ [vmin,∞), v3(I) = I−1
3 (I).

Remark 1. We have the following situations:

• If I < Imin or if I > Imax, then system (4) has an unique equilibrium state.
• If I = Imin or if I = Imax, then system (4) has two equilibrium states.
• If I ∈ (Imin, Imax), then system (4) has three equilibrium states.

4.2 Stability of equilibrium states

For the investigation of the stability of equilibrium states, we consider the Jaco-
bian matrix associated to system (4) at an arbitrary equilibrium state (v∗,w∗) =
(v∗,w∞(v∗)):

J(v∗) =
[

1− (v∗)2 −1
φ α −φ

]
The characteristic equation at the equilibrium state (v∗,w∗) is

sq1+q2 −a11sq2 −a22sq1 +det(J(v∗)) = 0 (5)

where
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a11 = 1− (v∗)2

a22 =−φ < 0

Tr(J(v∗)) = 1− (v∗)2−φ

det(J(v∗)) = φ · I′∞(v∗).

Considering α < 1, the following results are obtained.

Proposition 3. Any equilibrium state from the second branch of equilibrium states
(v2(I),w∞(v2(I))) (with I ∈ (Imin, Imax)) of system (4) is unstable, regardless of the
fractional order q1 and q2.

Proof. Let I ∈ (Imin, Imax) and v?= v2(I)∈ (vα ,vβ ). Then I′∞(v
?)< 0, so det(J(v∗))<

0. From Proposition 2 (point 1), the equilibrium state (v?,w?) = (v2(I),w∞(v2(I)))
is unstable, regardless of the fractional orders q1 and q2.

Proposition 4. Any equilibrium state (v?,w?) of system (4) belonging to the first
or the third branch with |v?| >

√
1−φ is asymptotically stable, regardless of the

fractional order q1 and q2.

Proof. Let (v?,w?) be an equilibrium state belonging to the first or the third branch
of equilibrium states such that |v∗|>

√
1−φ . So Tr(J(v∗))< 0 and a11 ≤ 1. More-

over, det(J(v∗)) > 0 > a22. We apply Proposition 2 (point 3a) and we obtain the
conclusion. ut

Consider the following two subcases:

4.2.1 Case α ∈ (0,φ ]

In this case, the second branch of equilibrium states is completely unstable, regard-
less of the fractional orders q1 and q2 and for the first and third branch of equilibrium
states, the following result is obtained (see Figure 3):

Corollary 2. Any equilibrium state belonging to the first and the third branch of
equilibrium states are asymptotically stable, regardless of the fractional orders q1
and q2

Proof. Let (v?,w?) be an equilibrium state belonging to the first or the third branch
of equilibrium states. Then |v∗|>

√
1−α >

√
1−φ . From Proposition 4 we obtain

the conclusion. ut

4.2.2 Case α ∈ (φ ,1)

In this case, we have the following situations (see Figure 4 and Figure 5):
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• any equilibrium point belonging to the first or the third branch with |v∗| ≥
√

1−φ

is asymptotically stable, regardless of the fractional orders q1 and q2;
• any equilibrium point belonging to the second branch of equilibrium states is

unstable, regardless of the fractional orders q1 and q2;
• the stability of any equilibrium point belonging to the first branch of equilibrium

states with v∗ ∈ [−
√

1−φ ,−
√

1−α] or to the third branch of equilibrium states
with v∗ ∈ [

√
1−α,

√
1−φ ] will depend on the fractional orders q1 and q2.

5 Conclusions

In this work, recently obtained theoretical results concerning the asymptotic sta-
bility and instability of a two-dimensional linear autonomous system with Caputo
derivatives of different fractional orders have been reviewed and extended. As a
consequence, improved fractional-order independent sufficient conditions for the
stability and instability of such systems have been obtained. Several open problems
are identified below, which require further investigation, in accordance to the recent
trends in the field of interest of fractional-order differential equations:

• Are the fractional-order-independent sufficient conditions for stability and insta-
bility identified in this work, also necessary?

• Complete characterization of the fractional-order-independent stability set and
fractional-order-independent instability set, respectively.

• Extension of these results to the case of two-dimensional systems of fractional-
order difference equations [25, 26] and to higher dimensional systems.

As an application, the second part of the paper investigated the stability prop-
erties of a fractional-order FitzHugh-Nagumo system. Moreover, numerical simula-
tions were provided, exemplifying the theoretical findings and revealing the possible
occurrence of Hopf bifurcations when critical values of the fractional orders are en-
countered.
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Fig. 1 Individual curves Γ (c,q1,q2) (black) given by Lemma 3, for fixed values of c = 5, q1 = 0.6,
for different values of q2 in the range 0.02 to 1. The shaded connected regions from the upper right
corner (red) and lower left corner (blue) represent the sets Rs(c) and Ru(c), respectively. The black
curves represent the boundary of the fractional-order-dependent stability region in each case.
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Fig. 2 Curves Γ (c,q1,q2) given by Lemma 3, for fixed values of c = 5, q1 = 0.6, varying q2 from
0.01 (red curve) to 1 (violet curve) with step size 0.01. The shaded connected regions from the
upper right corner (red) and lower left corner (blue) represent the sets Ru(c) and Rs(c), respectively.
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Fig. 3 Membrane potential (v∗) of the equilibrium states (v∗,w∗) of system (3) belonging to the
three branches (with parameter values: r = 0.08, c = 0.7, d = 4.2) with respect to the external
excitation current I and their stability: red continuous and blue dotted parts represent asymptotic
stability and instability of the corresponding equilibrium states, regardless of the fractional orders
q1 and q2.
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Fig. 4 Membrane potential (v∗) of the equilibrium state (v∗,w∗) of system (3) (with parameter
values: r = 0.08, c = 0.7, d = 1.2) with respect to the external excitation current I and their sta-
bility: the red continuous pieces represent parts of the first and third branches of equilibrium states
which are asymptotically stable, regardless of the fractional orders q1 and q2; the blue dotted piece
represents the second branch of equilibrium states, which is fully unstable; the green dashed pieces
represent equilibrium states from the first and the third branches of equilibrium states whose sta-
bility depends on the fractional orders q1 and q2.
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Fig. 5 Stability regions (shaded) in the (q1,q2)-plane for equilibrium states (v∗,w∗) of system
(3) (with parameter values: r = 0.08, c = 0.7, d = 1.2), with different values of the membrane
potential v∗ between

√
1−α ≈ 0.41 and

√
1−φ ≈ 0.95. In each case, the part of the blue curve

strictly above the first bisector represents the Hopf bifurcation curve in the (q1,q2)-plane.
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Fig. 6 Evolution of the state variables of system (3) (with parameter values: r = 0.08, c = 0.7,
d = 1.2 and I = 1.25) for different values of the fractional orders. In the first five graphs, the value
for fractional order q2 has been fixed 0.8 and the value of the fractional order q1 has been increased.
Observe that for q1 = 0.6 we have asymptotic stability and for q1 = 0.65 we have oscilations,
which means that between those values a Hopf bifucation occurs. Moreover, we observe that as q1
is increased, the frequency of the oscillations increases.


