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Abstract Arelationship between the general linear group of degree n over a finite field
and the integer partitions of n into parts of k different magnitudes was investigated
recently by the author. In this paper, we use a variation of the classical binomial
transform to derive a new connection between partitions into parts of k different
magnitudes and another finite classical group, namely the symplectic group Sp. New
identities involving the number of partitions of n into parts of k different magnitudes
are introduced in this context.
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1 Introduction

The first objects of our investigation are the number of partitions of the positive integer
n that have exactly k distinct values for the parts and the difference between the number
of partitions of n into even number parts and odd number parts that have exactly k
distinct values for the parts. MacMahon [11] denoted these numbers by vk(n) and
(−1)kμk(n). He remarked that the generating functions of vk(n) and μk(n) are given
by

Nk(q) =
∞∑

n=0

vk(n)qn =
∑

1�n1<n2<···<nk

qn1+n2+···+nk

(1 − qn1)(1 − qn2) · · · (1 − qnk )
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and

Mk(q) =
∞∑

n=0

μk(n)qn =
∑

1�n1<n2<···<nk

qn1+n2+···+nk

(1 + qn1)(1 + qn2) · · · (1 + qnk )
,

respectively. For example, v3(8) = 5 and μ3(8) = 1 because the five partitions in
question are

5 + 2 + 1 = 4 + 3 + 1 = 4 + 2 + 1 + 1 = 3 + 2 + 2 + 1 = 3 + 2 + 1 + 1 + 1.

Very recently, Merca [15] proved that the partitions of the positive integer n into parts
of k different magnitudes and the number of conjugacy classes in the general linear
group of degree n over a finite field with m elements, denoted by cn(m), are related
by the following finite discrete convolutions

∑

d|n
md−1 =

n∑

j=1

j∑

k=1

(1 − m)k−1kvk( j)cn− j (m) (1)

and

�√
n�−1∑

j=1−�√
n�

(−1) j
∑

d|n− j2

md−1 =
n∑

j=1

j∑

k=1

(−1 − m)k−1kμk( j)cn− j (m). (2)

We remark that the first relationship between the number of conjugacy classes in some
finite classical groups and integer partitions was investigated in 1981 by Macdonald
[10].

The distribution of fixed vectors for the classical groups over finite fieldswas studied
in 1988 by Rudvalis and Shinoda [3–5]. They use Mobius inversion to determine, for
each finite classical group (i.e., one of the general linear group GL , the unitary group
U , the symplectic group Sp, or the orthogonal group O), and for each integer k,
the probability that the fixed space of a random element of G is k-dimensional. Let
G = G(n) be a classical group acting on an n dimensional vector space over a finite
field with m elements (in the unitary case with m2 elements) in its natural way. We
denote by PG,n(k,m) the chance that an element of G fixes a k-dimensional subspace.
Let PG,∞(k,m) be the case n → ∞ of PG,n(k,m).

In particular, due to Rudvalis and Shinoda [17], we have

PSp,∞(k,m) = 1

(−q; q)∞
· q(k+1

2 )

(q; q)k
, with q = 1

m
. (3)

This elegant formula is the second object of our investigation. We want to point out
that the quantity PSp,∞(k,m) arises in other contexts, such asMalle’s work onCohen–
Lenstra heuristic for class groups of number fields in the case that roots of unity are
present in the base field [12].
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For |q| < 1, it is well known that

1

(−q; q)∞
=

∞∑

n=0

(pe(n) − po(n))qn

and
q(k+1

2 )

(q; q)k
=

∞∑

n=0

q(n, k)qn,

where pe(n), respectively po(n) denotes the number of partitions of n into even,
respectively, odd number of parts, and q(n, k) denotes the number of partitions of n
into exactly k distinct parts. Considering the well-known Cauchy multiplication of
two power series, the Rudvalis–Shinoda formula (3) can be written as

PSp,∞(k,m) =
∞∑

n=(k+1
2 )

⎛

⎝
n∑

j=k

(pe(n − j) − po(n − j))q( j, k)

⎞

⎠ 1

mn
.

In this paper, motivated by these results, we shall prove that PSp,∞(k,m) can be
expressed in terms of the partition function μk(n).

Theorem 1 Let k and m be positive integers. Then

PSp,∞(k,m) =
∞∑

n=(k+1
2 )

⎛

⎝
n∑

j=k

(−1) j−k
(
j

k

)
μ j (n)

⎞

⎠ 1

mn
.

As a consequence of this theorem, we derive the following identity.

Corollary 1 Let k and n be positive integers. Then

n∑

j=k

(−1) j−k
(
j

k

)
μ j (n) =

n∑

j=k

(pe(n − j) − po(n − j))q( j, k).

The expression of PSp,∞(k,m) in terms of the partition function vk(n) is more
involved and follows directly from Theorem 1 and [15, Corollary 1.6].

Corollary 2 Let k and m be positive integers. Then

PSp,∞(k,m) =
∞∑

n=(k+1
2 )

⎛

⎝
�√

n�−1∑

i=1−�√
n�

n−i2∑

j=k

(−1)i
(
j

k

)
v j (n − i2)

⎞

⎠ 1

mn

Denoting by βk(n) the coefficient of 1
mn in PSp,∞(k,m), we remark the following

recurrence relation.
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Corollary 3 Let k and n be positive integers. Then

βk(n) = βk(n − k) + βk−1(n − k),

with the initial conditions

β0(n) = pe(n) − po(n).

This relation follows easily considering the identity

q(k+1
2 )

(q; q)k
− q(k+1

2 )+k

(q; q)k
− q(k2)+k

(q; q)k−1
= 0. (4)

Other identities involving the partition functions vk(n) and μk(n) are presented in
this paper.

2 Proof of Theorem 1

In [9, p. 137], Knuth introduced the idea of the binomial transform,mapping sequences
of real numbers onto sequences of real numbers. The inversion formula

bn =
n∑

k=0

(−1)n−k
(
n

k

)
ak ⇔ an =

n∑

k=0

(
n

k

)
bk (5)

plays an important role in the analysis of some algorithms and data structures, and in
the solution of many combinatorial problems [6,16]. This inversion formula may be
expressed in the matrix form as follows

⎡

⎢⎣
b0
...

bn

⎤

⎥⎦ =
[
(−1)i− j

(
i

j

)]

0�i, j�n

⎡

⎢⎣
a0
...

an

⎤

⎥⎦ ⇔
⎡

⎢⎣
a0
...

an

⎤

⎥⎦ =
[(

i

j

)]

0�i, j�n

⎡

⎢⎣
b0
...

bn

⎤

⎥⎦ .

It is clear that

[(
i

j

)]−1

0�i, j�n
=

[
(−1)i− j

(
i

j

)]

0�i, j�n
.

Moreover, taking into account that the transpose of an invertible matrix is also invert-
ible, and its inverse is the transpose of the inverse of the original matrix, we can
write [(

j

i

)]−1

0�i, j�n
=

[
(−1) j−i

(
j

i

)]

0�i, j�n
. (6)
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We now consider two sequences {αn}n�0 and {βn}n�0 such that

⎡

⎢⎣
β0
...

βn

⎤

⎥⎦ =
[
(−1) j−i

(
j

i

)]

0�i, j�n

⎡

⎢⎣
α0
...

αn

⎤

⎥⎦ .

According to (6), it is clear that

⎡

⎢⎣
α0
...

αn

⎤

⎥⎦ =
[(

j

i

)]

0�i, j�n

⎡

⎢⎣
β0
...

βn

⎤

⎥⎦ .

In this way, we obtain a new inversion formula

βp =
n∑

k=p

(−1)k−p
(
k

p

)
αk ⇔ αp =

n∑

k=p

(
k

p

)
βk . (7)

Recently, Merca [14] proved the following identity

Mk(q) = 1

(−q; q)∞

∞∑

n=k

(n
k

)
q(n+1

2 )

(q; q)n
. (8)

So denoting by βn(m) the coefficient of qm in

1

(−q; q)∞
· q(n+1

2 )

(q; q)n
,

we can write

∞∑

n=0

μk(n)qn =
∞∑

n=k

(
n

k

) ∞∑

m=0

βn(m)qm

=
∞∑

m=0

( ∞∑

n=k

(
n

k

)
βn(m)

)
qm .

It is clear that

μk(m) =
∞∑

n=k

(
n

k

)
βn(m).

By this identity, considering the case n → ∞ of (7), we obtain

βk(m) =
∞∑

n=k

(−1)n−k
(
n

k

)
μn(m).
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Taking into account that μn(m) = 0 for n > m, Theorem 1 is proved.

3 New identities involving the partition functions vk(n) and µk(n)

Firstly, we remark a similar result to Theorem 1.

Theorem 2 Let k be a non-negative integer. The coefficient of qn in the expansion

1

(q; q)∞
· q(k+1

2 )

(q; q)k

is given by

αk(n) =
n∑

j=k

(
j

k

)
v j (n)

and

αk(n) = αk(n − k) + αk−1(n − k),

with the initial conditions

α0(n) = p(n),

where p(n) denotes the number of unrestricted partitions of n.

Proof According to Andrews [1] and Merca [14], we have

Nk(q) = 1

(q; q)∞

∞∑

n=k

(−1)n−k

(n
k

)
q(n+1

2 )

(q; q)n
. (9)

Similar to the proof of Theorem 1, it can be shown that

vk(m) =
∞∑

n=k

(−1)n−k
(
n

k

)
αn(m.,

The proof follows easily considering the case n → ∞ of (7) and then the identity (4).
�	

Note that the recurrence relation for αk(n) is identical in form to the recurrence
relation for βk(n); the initial conditions are different.

The following result is similar to Corollary 1.
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Corollary 4 Let k and n be positive integers. Then

n∑

j=k

(
j

k

)
v j (n) =

n∑

j=k

p(n − j)q( j, k).

Proof 1We take into account Theorem 2 and the fact that

1

(q; q)∞
· q(k+1

2 )

(q; q)k
=

( ∞∑

n=0

p(n)qn
)( ∞∑

n=0

q(n, k)qn
)

.

�	
Proof 2 We take into account the inversion formula (7) and the first identity of [14,
Corollary 1.2], i.e.,

vk(n) =
n∑

j=1

ak( j)p(n − j),

where

ak(n) =
n∑

j=k

(−1) j−k
(
j

k

)
q(n, j).

�	
The following result shows that the number of partitions of n into exactly k distinct

parts can be expressed in terms of the function vk(n).

Corollary 5 Let k and n be positive integers. Then

q(n, k) =
n∑

j=k

(
j

k

)
a j (n)

where

ak(n) =
∞∑

j=−∞
vk(n − j (3 j − 1)/2).

Proof We consider the inversion formula (7) and the second identity of [14, Corollary
1.2], i.e.,

∞∑

j=−∞
vk(n − j (3 j − 1)/2) =

n∑

j=k

(−1) j−k
(
j

k

)
q(n, j).

�	
A similar result to this corollary can be obtained considering the inversion formula

(7) and the second identity of [14, Corollary 1.3], i.e.,
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n∑

j=k

(
j

k

)
q(n, j) =

n∑

j=k

μk( j)q(n − j),

where q(n) denotes the number of partitions of n into distinct parts.

Corollary 6 Let k and n be positive integers. Then

q(n, k) =
n∑

j=k

(−1) j−k
(
j

k

)
b j (n),

where

bk(n) =
n∑

j=k

μk( j)q(n − j).

4 Concluding remarks

A connection between the partitions into parts of k different magnitudes and the
symplectic group Sp has been introduced in this paper using a variation of the classical
binomial transform. This approach allows us to obtain few identities that involve the
partitions functions vk(n) and μk(n). It can be seen that these identities are different
from those recently presented by the author in [14,15].

In addition, by (7), (8), and (9), we can derive two surprising inversion formulas.

Theorem 3 Let k be a positive integer. For |q| < 1,

Nk(q) = 1

(q; q)∞

∞∑

n=k

(−1)n−k

(n
k

)
q(n+1

2 )

(q; q)n

if and only if

∞∑

n=k

(
n

k

)
Nn(q) = q(k+1

2 )

(q; q)k(q; q)∞
.

Theorem 4 Let k be a positive integer. For |q| < 1,

Mk(q) = 1

(−q; q)∞

∞∑

n=k

(n
k

)
q(n+1

2 )

(q; q)n

if and only if

∞∑

n=k

(−1)n−k
(
n

k

)
Mn(q) = q(k+1

2 )

(q; q)k(−q; q)∞
.
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Moreover, the truncated forms of these inversion formulas follow directly from (7)
and [14, Theorem 1].

Theorem 5 Let k and n be positive integers such that k � n. For |q| < 1,

∑

1�n1<n2<···<nk�n

qn1+n2+···+nk

(1 ± qn1)(1 ± qn2) · · · (1 ± qnk )

= 1

(∓q; q)n

n∑

j=k

(±1) j−kq( j+1
2 )

(
j

k

)[
n
j

]
,

if and only if

n∑

j=k

(∓1) j−k
(
j

k

) ∑

1�n1<n2<···<n j�n

qn1+n2+···+n j

(1 ± qn1)(1 ± qn2) · · · (1 ± qn j )

= q(k+1
2 )

(∓q; q)n

[
n
k

]
,

where

[
n
k

]
=

⎧
⎨

⎩

(q; q)n

(q; q)k(q; q)n−k
, if k ∈ {0, 1, . . . , n},

0, otherwise.

is the q-binomial coefficient.

Finally, we remark that the truncated theta series were recently investigated in
several papers by Andrews and Merca [2], Guo and Zeng [7], He et al. [8], Mao [13],
and Yee [18].
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