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Abstract. In this paper, we give an infinite sequence of inequalities involving the Riemann zeta

function with even arguments ζ (2n) and the Chebyshev-Stirling numbers of the first kind. This

result is based on a recent connection between the Riemann zeta function and the complete

homogeneous symmetric functions [18]. An interesting asymptotic formula related to the n th

complete homogeneous symmetric function is conjectured in this context:
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1. Introduction

The main object of our investigation is the Riemann zeta function or Euler-Riemann

zeta function

ζ (s) =
∞

∑
k=1

1

ks

which is defined over the complex plane when the real part of s is greater than 1.

Originally the Riemann zeta function was defined for real arguments by Euler as

ζ (x) =
∞

∑
k=1

1

kx
, x > 1.

Moreover, for real x > 1, we have

ζ (x) > ζ (x + 1) and lim
x→∞

ζ (x) = 1.

In spite of its utter simplicity, this function plays a pivotal role in analytic number theory

having applications in physics, probability theory, applied statistics and other fields of
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mathematics. The reader should consult the classical papers by Abramowitz and Stegun

[1], Apostol [5], Berndt [6], Everest, Röttger and T. Ward [7], Ireland and Rosen [13],

Murty and Reece [23], and Weil [24] for the full background on this function.

Being given an infinite set of variables {x1,x2,x3, . . .} , recall [14] that the n th

complete homogeneous symmetric function hn is the sum of all monomials of total

degree n in these variables so that h0 = 1 and for n > 0

hn = hn(x1,x2,x3, . . .) = ∑
16i16i26...6in

xi1xi2 . . .xin .

In a recent paper [18, Eq. (3.1)], the Riemann zeta function with even arguments,

ζ (2n) , was expressed in terms of the n th complete homogeneous symmetric function

of the numbers 1
12 , 1

22 , 1
32 , . . . , as follows

hn

(

1

12
,

1

22
,

1

32
, . . .

)

= 2

(

1−
2

22n

)

ζ (2n), n > 0. (1)

Considering the recurrence relation

hn(x1,x2,x3, . . .) = x1hn−1(x1,x2,x3, . . .)+ hn(x2,x3,x4, . . .), (2)

we deduce the inequality

(

1−
2

22n

)

ζ (2n)−

(

1−
2

22n−2

)

ζ (2n−2) > 0. (3)

This result seems more interesting if we consider the trivial inequality

ζ (2n)− ζ (2n−2) < 0.

Upon reflection, one expects that there might be an infinite family of such inequal-

ities where (3) is the second entry, and the trivial inequality

(

1−
2

22n

)

ζ (2n) > 0

is the first.

For all nonnegative integers n and k , we define Sn(k) by

Sn(k) =
k

∑
i=0

(−1)i

[

k + 1

i+ 1

]

1/2

(

1−
2

22n−2i

)

ζ (2n−2i),

where

[

n

k

]

1/2

are the Chebyshev-Stirling numbers of the first kind. Recall that the

Chebyshev-Stirling numbers of the first kind are known in the literature [9, 10, 17]

as the case γ = 1/2 of the Jacobi-Stirling numbers of the first kind that can be given

through the recurrence relation

[

n

k

]

γ

=

[
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]

γ

+(n−1)(n + 2γ−2)
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]

γ

(4)
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with the initial conditions

[

n

0

]

γ

= δ0,n and

[

0

k

]

γ

= δ0,k,

where δi, j is the Kronecker delta. The Jacobi-Stirling numbers were discovered in

2007 as a result of a problem involving the spectral theory of powers of the classical

second-order Jacobi differential expression. In the last decade, these numbers received

considerable attention especially in combinatorics and graph theory, see, e.g., [2, 3, 4,

8, 9, 10, 11, 12, 15, 16, 17, 19, 20, 21, 22].

In this paper, we shall prove the following inequalities.

THEOREM 1. For n,k > 0 ,

1. Sn(k) > 0;

2.
Sn(k)

k!2
>

Sn(k + 1)

(k + 1)!2
.

EXAMPLE 1. Having

[

[

n

k

]

1/2

]

n,k=1,5

=













1

1 1

4 5 1

36 49 14 1

576 820 273 30 1













,

we can write the following sequence of inequalities:

(
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)

ζ (2n)
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ζ (2n)−
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>
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5

4

(
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1

4
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)
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>
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)
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+
7
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)

ζ (2n−4)−
1
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)

ζ (2n−6)

>

(

1−
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)

ζ (2n)−
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(
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2
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)

ζ (2n−2)+
91
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(

1−
2

22n−4

)

ζ (2n−4)

−
5

96

(
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)

ζ (2n−6)+
1
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(

1−
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22n−8

)

ζ (2n−8)

> .. . > 0.
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Related to the first inequality of Theorem 1, we remark a well-known property of

the Chebyshev-Stirling numbers of the first kind, that is,

k

∑
i=0

(−1)i

[

k + 1

i+ 1

]

1/2

= 0.

2. Proof of Theorem 1

Firstly, we prove the following lemma in two ways.

LEMMA 1. For n,k > 0 ,

hn
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1
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1

(k + 3)2
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)

=
k

∑
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k!2

[
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1/2
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(

1
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)

.

Proof 1 . This proof invokes the generating functions for the complete and ele-

mentary symmetric functions. Being given a set of variables {x1,x2, . . . ,xn} , recall

[14] that the k th elementary symmetric function ek(x1,x2, . . . ,xn) is given by

ek(x1,x2, . . . ,xn) = ∑
16i1<i2<···<ik6n

xi1xi2 · · ·xik

for k = 1,2, . . . ,n . We set e0(x1,x2, . . . ,xn) = 1 by convention. For k < 0 or k > n , we

set ek(x1,x2, . . . ,xn) = 0. In particular, according to Merca [18], we have

ek

(

1
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,
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22
,
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32
, . . . ,

1
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)

=
1

n!2

[

n + 1

k + 1
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1/2

.

The elementary symmetric functions are characterized by the following identity of for-

mal power series in t :

∞

∑
k=0

ek(x1,x2, . . . ,xn)t
k =

n

∏
k=1

(1 + xkt).

For the complete homogeneous symmetric functions in infinitely many variables x1,x2, . . . ,
we have

∞

∑
k=0

hk(x1,x2, . . .)t
k =

∞

∏
k=1

(1− xkt)
−1.
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Thus, we can write

∞
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tn,

where we have invoked the well known Cauchy multiplication of two power series.

Equating coefficients of tn give the result. �

Proof 2 . We are going to prove this lemma by induction on k . For k = 0, we have
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The base case of induction is finished. We suppose that the relation
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is true for any integer k′ , 0 6 k′ < k . Taking into account (2), we can write
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where we have invoked the recurrence relation (4), with γ replaced by 1/2. Thus, the

proof of the lemma is finished. �

Theorem 1 follows considering this lemma, the equation (1) and the inequalities
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3. Concluding remarks

A formula for the n th complete homogeneous symmetric function
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in terms of the complete homogeneous symmetric functions

hi

(

1

12
,

1

22
,

1

32
, . . .

)

, i = n− k, . . . ,n

has been introduced in this paper. Using this result, we derived an infinite sequence of

inequalities involving the Riemann zeta function with even arguments ζ (2n) and the

Chebyshev-Stirling numbers of the first kind.

There is a substantial amount of numerical evidence to conjecture that the follow-

ing inequality is true.

CONJECTURE 1. For n,k > 0,
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Moreover, we conjecture that the sequence
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CONJECTURE 2. For k > 0,
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Finally, assuming Conjecture 1, we can write the following inequality.

CONJECTURE 3. For n,k > 0,

Sn(k) <
(2k + 1)!

(k + 1)2n+1
.
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