Lambert series and conjugacy classes in GL

Mircea Merca

Academy of Romanian Scientists, Splaiul Independentei 54, Bucharest, 050094, Romania

A R T I C L E I N F O

Article history:
Received 28 June 2016
Received in revised form 25 April 2017
Accepted 26 April 2017

Keywords:
Conjugacy classes
Lambert series
Partitions
Overpartitions

A B S T R A C T

A relationship between the general linear group $GL(n, m)$ and integer partitions was investigated by Macdonald in order to calculate the number of conjugacy classes in $GL(n, m)$. In this paper, the author introduced two different factorizations for a special case of Lambert series in order to prove that the number of conjugacy classes in the general linear group $GL(n, m)$ and the number of partitions of n into k different magnitudes are related by a finite discrete convolution. New identities involving overpartitions, partitions into k different magnitudes and other combinatorial objects are discovered and proved in this context. © 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $v_k(n)$ be the number of partitions of the positive integer n that have exactly k distinct values for the parts. For example, $v_3(8) = 5$ because the five partitions in question are $5 + 2 + 1 = 4 + 3 + 1 = 4 + 2 + 1 + 1 = 3 + 2 + 2 + 1 = 3 + 2 + 1 + 1 + 1$.

MacMahon [19] proved in 1921 that

$$N_k(q) = \sum_{n=0}^{\infty} v_k(n)q^n = \sum_{1 \leq n_1 < n_2 < \cdots < n_k} \frac{q^{n_1 + n_2 + \cdots + n_k}}{(1 - q^{n_1})(1 - q^{n_2}) \cdots (1 - q^{n_k})}$$

and

$$M_k(q) = \sum_{n=0}^{\infty} \mu_k(n)q^n = \sum_{1 \leq n_1 < n_2 < \cdots < n_k} \frac{q^{n_1 + n_2 + \cdots + n_k}}{(1 + q^{n_1})(1 + q^{n_2}) \cdots (1 + q^{n_k})}$$

where $(-1)^k \mu_k(n)$ is the difference between the number of partitions of n into even number parts and odd number parts that have exactly k distinct values for the parts.

In 1999, Andrews [1] found that $N_k(q)$ satisfies the following identity

$$N_k(q) = \frac{1}{(q; q)_\infty} \sum_{n=0}^{\infty} (-1)^{n-k} \frac{(q^n q^{n+1})}{(a; q)_n}, \quad |q| < 1,$$

where

$$(a; q)_n = (1 - a)(1 - aq)(1 - aq^2) \cdots (1 - aq^{n-1})$$

E-mail address: mircea.merca@profinfo.edu.ro.

http://dx.doi.org/10.1016/j.disc.2017.04.020

0012-365X/© 2017 Elsevier B.V. All rights reserved.
is the q-shifted factorial, with $(a; q)_0 = 1$. Recently, Merca [21] proved a similar result for $M_k(q)$, i.e.,

$$M_k(q) = \frac{1}{(-q; q)_{\infty}} \sum_{n=0}^{\infty} \binom{n}{k} q^{n \delta_{k}\left(1, \frac{1}{2}\right)} \frac{(-q; q)^n}{(q; q)_n},$$

(2)

considering the following truncated forms of $N_k(q)$ and $M_k(q)$.

Theorem 1. Let k and n be positive integers such that $k \leq n$. For $|q| < 1$,

$$\sum_{1 \leq n_1 < n_2 < \ldots < n_k \leq n} \frac{q^{n_1 + n_2 + \cdots + n_k}}{(1 \pm q^{n_1})(1 \pm q^{n_2}) \cdots (1 \pm q^{n_k})} = \frac{1}{(q; q)_n} \sum_{j=k}^{n} (\pm 1)^{j-k} q^{\binom{j+1}{2}} \binom{n}{j},$$

where

$$\binom{n}{k} = \begin{cases}
(q; q)_n, & \text{if } k \in \{0, 1, \ldots, n\}, \\
0, & \text{otherwise}
\end{cases}$$

is the q-binomial coefficient.

As corollaries of this result, some relations involving $v_k(n)$, $\mu_k(n)$ and the number of partitions of n into exactly k distinct parts were deduced by q-series manipulation [21]. We remark that the truncated theta series were recently studied in several papers by Andrews and Merca [23], Chan, Ho and Mao [7] Guo and Zeng [12], He, Ji and Zang [12], Kolitisch [13] Mao [20], and Yee [24]. Very recently, Merca [22] has been provided two recurrence relations for computing the numbers $v_k(n)$ and $\mu_k(n)$ that do not involve other partition functions.

In this paper, motivated by these results, we shall provide new relations that involve the functions $v_k(n)$ and $\mu_k(n)$. To this end, we consider the well-known Lambert series

$$\sum_{n=1}^{\infty} a_n \frac{q^n}{1 - q^n}$$

and introduce the following factorizations for the special case $a_n = m^n$, with m a real or complex number.

Theorem 2. Let m be a real or complex number. For $|q| < 1$,

$$\sum_{n=1}^{\infty} m^{n-1} \frac{q^n}{1 - q^n} = \frac{(-q; q)_{\infty}}{(mq; q)_{\infty}} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \left(1 - m \right)^{k-1} kv_k(n) \right) q^n,$$

with the convention $0^0 = 1$ in the case $m \in \{0, 1\}$.

Theorem 3. Let m be a real or complex number. For $|q| < 1$,

$$\sum_{n=1}^{\infty} m^{n-1} \frac{q^n}{1 - q^n} = \frac{(-q; q)_{\infty}}{(mq; q)_{\infty}} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} \left(1 - m \right)^{k-1} k\mu_k(n) \right) q^n,$$

with the convention $0^0 = 1$ in the case $m \in \{-1, 0\}$.

The general linear group of degree n over any field F is the set of $n \times n$ invertible matrices with entries from F together with the matrix multiplication as the group operation. Typical notation is $GL_n(F)$ or $GL(n, F)$, or simply $GL(n)$ if the field is understood. If F is a finite field with m elements, then we write $G(n, m)$ instead of $GL_n(F)$ or $GL(n, F)$. The numbers of conjugacy classes in some finite classical groups were investigated in 1981 by Macdonald [17]. For a positive integer m, we denote by $c_n(m)$ the number of conjugacy classes in the finite group $GL(n, m)$. Due to Feit and Fain [10], the generating function for $c_n(m)$ is given by

$$\sum_{n=0}^{\infty} c_n(m) q^n = \frac{(q; q)_{\infty}}{(mq; q)_{\infty}}.$$

For $m = 1$, we have $c_n(1) = \delta_{0,n}$, where $\delta_{i,j}$ is the Kronecker delta. By Theorem 2, we deduce that the number of conjugacy classes in $GL(n, m)$ and the number of partitions of n into parts of k different magnitudes are related by the following convolution.

Corollary 1. Let m and n be positive integers. Then

$$\sum_{d|n} m^{d-1} = \sum_{j=1}^{n} \sum_{k=1}^{j} (1 - m)^{k-1} kv_k(j)c_{n-j}(m).$$
Corollary 1.2. Let m and n be positive integers. Then
\[
\sum_{d|n} (-1)^{\left\lfloor \sqrt{n} \right\rfloor - j} m^{d-1} = \sum_{j=1}^{n} \left(-1 \right)^{n-j} k \mu_k(j) c_{n-j}(m).
\]

In multiplicative number theory, the divisor function \(\tau(n) \) is defined as the number of divisors of \(n \), unity and \(n \) itself included, i.e.,
\[
\tau(n) = \sum_{d|n} 1.
\]

We use the convention that \(\tau(n) = 0 \) for \(n \leq 0 \). We denote by \(\tau_o(n) \) the number of odd divisors of \(n \) and by \(\tau_e(n) \) the number of even divisors of \(n \). The identities \(\tau(n) = v_1(n) \) and \(\tau_o(n) - \tau_e(n) = \mu_1(n) \) are trivial. The case \(m = 1 \) of Corollary 1.2 provides a connection between the functions \(\mu_k(n) \) and \(\tau(n) \).

Corollary 1.3. Let \(n \) be a positive integer. Then
\[
\sum_{j=1}^{\left\lfloor \sqrt{n} \right\rfloor} (-1)^{j} \tau(n - j^2) = \sum_{k=1}^{n} (-2)^{k-1} k \mu_k(n).
\]

A new expansion for \(\tau_o(n) - \tau_e(n) \) in terms of \(v_k(n) \) can be easily obtained from Theorem 2 replacing \(m \) by \(-1\).

Corollary 1.4. Let \(n \) be a positive integer. Then
\[
\tau_o(n) - \tau_e(n) = \sum_{j=1}^{\left\lfloor \sqrt{n} \right\rfloor} (-1)^{\left\lfloor \sqrt{n} \right\rfloor - j} 2^k v_k(n - j^2).
\]

On the other hand, Corollaries 1.3 and 1.4 are special cases of the following consequence of Theorems 2 and 3.

Corollary 1.5. Let \(m \) be a real or complex number. For \(n > 0 \),
\[
\sum_{k=1}^{n} (-1)^{n-k} k \mu_k(n) = \sum_{j=1}^{\left\lfloor \sqrt{n} \right\rfloor} (-1)^{n-j^2} (1 - m)^{k-1} v_k(n - j^2), \tag{3}
\]
with the convention 0\(^0\) = 1 in the case \(m \in \{-1, 1\} \).

Equating coefficients of \(m^p \) on each side of this relation gives the following relationship between the function \(v_k(n) \) and \(\mu_k(n) \).

Corollary 1.6. Let \(p \) be a positive integer. For \(n > 0 \),
\[
\sum_{k=p}^{n} (-1)^{k-p} \left(\begin{array}{c} k \\ p \end{array} \right) \mu_k(n) = \sum_{j=1}^{\left\lfloor \sqrt{n} \right\rfloor} \sum_{k=p}^{n-j^2} (-1)^k \left(\begin{array}{c} k \\ p \end{array} \right) v_k(n - j^2).
\]

As far as we know, the general identities provided by Theorems 2 and 3 are new. A lot of identities involving \(v_k(n) \) and \(\mu_k(n) \) can be derived as consequences of these theorems. Some of them are presented in this paper. Combinatorial interpretations for
\[
\sum_{k=1}^{n} k v_k(n) \quad \text{and} \quad \sum_{k=1}^{n} (-1)^{n-k} k \mu_k(n)
\]
are introduced in this context (see Corollaries 5.1 and 6.1).

2. Proofs of Theorems 2 and 3

Being given a set of variables \(\{x_1, x_2, \ldots, x_n\} \), recall [18] that the kth elementary symmetric function \(e_k(x_1, x_2, \ldots, x_n) \) is given by
\[
e_k(x_1, x_2, \ldots, x_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} x_{i_1}x_{i_2} \cdots x_{i_k}
\]
for \(k = 1, 2, \ldots, n \). We set \(e_0(x_1, x_2, \ldots, x_n) = 1 \) by convention. For \(k < 0 \) or \(k > n \), we set \(e_k(x_1, x_2, \ldots, x_n) = 0 \).
The elementary symmetric functions are characterized by the following identity of formal power series in t:

$$E(t) = \sum_{k=0}^{n} e_k(x_1, \ldots, x_n)t^k = \prod_{k=1}^{n}(1 + x_k t).$$

For $k = 1, 2, \ldots, n$, we consider that $1 + x_k t \neq 0$. On the one hand, we have

$$\frac{d}{dt} \ln(E(t)) = \sum_{k=1}^{n} \frac{d}{dt} \ln(1 + x_k t) = \sum_{k=1}^{n} \frac{x_k}{1 + x_k t}.$$

On the other hand, we can write

$$\frac{d}{dt} \ln(E(t)) = \left(\prod_{k=1}^{n} \frac{1}{1 + x_k t}\right) \left(\sum_{k=1}^{n} k e_k(x_1, \ldots, x_n) t^{k-1}\right).$$

Thus, by (4) and (5), we derive

$$\sum_{k=1}^{n} \frac{x_k}{1 + x_k t} = \left(\prod_{k=1}^{n} \frac{1}{1 + x_k t}\right) \left(\sum_{k=1}^{n} k e_k(x_1, \ldots, x_n) t^{k-1}\right),$$

where x_1, x_2, \ldots, x_n and t are independent variables such that $1 + x_k t \neq 0$ for $k = 1, 2, \ldots, n$.

By the last relation, with x_k replaced by $\frac{d}{dx_k}$ and t replaced by $\pm 1 - m$, we obtain the identity

$$\sum_{k=1}^{n} q^k \frac{1 - mq^n}{1 - q^n} = (\pm q; q)_n (mq; q)_n \sum_{k=1}^{n} (1 - m)^{k-1} k e_k \left(\frac{q}{1 + q}, \ldots, \frac{q^n}{1 + q^n}\right).$$

Taking into account that $N_k(q)$ and $M_k(q)$ are specializations of elementary symmetric functions, i.e.,

$$\sum_{n=0}^{\infty} v_k(n) q^n = e_k \left(\frac{q}{1 - q}, \frac{q^2}{1 - q^2}, \frac{q^3}{1 - q^3}, \ldots\right)$$

and

$$\sum_{n=0}^{\infty} \mu_k(n) q^n = e_k \left(\frac{q}{1 + q}, \frac{q^2}{1 + q^2}, \frac{q^3}{1 + q^3}, \ldots\right).$$

Theorems 2 and 3 are the limiting case $n \to \infty$ of the relation (6). In addition, we have invoked the well-known identity

$$\sum_{n=1}^{\infty} m^n q^n \frac{1 - mq^n}{1 - q^n} = \sum_{n=1}^{\infty} \frac{mq^n}{1 - mq^n}.$$

3. Proofs of Corollaries 1.1, 1.2 and 1.5

In general, for a_n $(n = 1, 2, \ldots)$ real or complex numbers we have

$$\sum_{n=1}^{\infty} a_n \frac{q^n}{1 - q^n} = \sum_{n=1}^{\infty} \left(\sum_{d|n} a_n\right) q^n, \quad |q| < 1.$$

So Theorem 2 can be written as

$$\sum_{n=1}^{\infty} \left(\sum_{d|n} c_n(m)^{n-1}\right) q^n = \left(\sum_{n=0}^{\infty} c_n(m) q^n\right) \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (1 - m)^{k-1} k v_k(n)\right) q^n\right).$$

Using the well-known Cauchy products of two power series

$$\left(\sum_{n=0}^{\infty} x_n q^n\right) \left(\sum_{n=0}^{\infty} y_n q^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} x_k y_{n-k}\right) q^n,$$

the proof of Corollary 1.1 follows easily.

By Theorem 3, we derived the identity

$$\frac{(q; q)_{\infty}}{(-q; q)_{\infty}} \sum_{n=1}^{\infty} m^{n-1} q^n \frac{1 - q^n}{1 - q^n} = \frac{(q; q)_{\infty}}{(mq; q)_{\infty}} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (1 - m)^{k-1} k \mu_k(n)\right) q^n.$$
From this identity, considering the relation
\[
\sum_{n=-\infty}^{\infty} q^n = \frac{(q; q)_\infty}{(-q; q)_\infty},
\] (7)
we obtain
\[
\left(\sum_{n=-\infty}^{\infty} q^n \right) \left(\sum_{n=1}^{\infty} \left(\sum_{d|n} m^{n-1} \right) q^n \right) = \left(\sum_{n=0}^{\infty} c_n(m)q^n \right) \left(\sum_{k=1}^{\infty} \left(\sum_{k=1}^{\infty} (-1)^{k-1} k\mu_k(n) \right) q^n \right).
\]

Equating coefficients of \(q^n \) on each side of this relation, the proof of Corollary 1.2 follows easily. By Theorems 2 and 3, we obtain the identity
\[
\frac{(q; q)_\infty}{(mq; q)_\infty} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} (1 - m)^{k-1} k\nu_k(n) \right) q^n = \frac{(-q; q)_\infty}{(mq; q)_\infty} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} (-1)^{k-1} k\mu_k(n) \right) q^n
\]
or
\[
\frac{(q; q)_\infty}{(-q; q)_\infty} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} (1 - m)^{k-1} k\nu_k(n) \right) q^n = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} (-1)^{k-1} k\mu_k(n) \right) q^n.
\]

Taking into account (7), the proof of Corollary 1.5 follows easily applying again the Cauchy multiplication of two power series.

4. Connections with overpartitions

In 2003 Corteel and Lovejoy introduced a new and exciting component of the theory of partitions which are called overpartitions [4–6,8,9,14–16]. An overpartition of \(n \) is a non-increasing sequence of natural numbers whose sum is \(n \) in which the first occurrence of a number may be overlined. For example, the 8 overpartitions of 3 are
\[
3, \quad \bar{3}, \quad 2 + 1, \quad 2 + \bar{1}, \quad 2 + 1 + 1, \quad 2 + \bar{1}, \quad \bar{1} + 1 + 1.
\]
The number of overpartitions of \(n \) is usually denoted by \(\bar{p}(n) \). Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary partition, we have the generating function
\[
\sum_{n=0}^{\infty} \bar{p}(n)q^n = \frac{(-q; q)_\infty}{(q; q)_\infty}. \quad (8)
\]

Some connections between overpartitions and partitions into parts of \(k \) magnitudes are present in this section.

Corollary 4.1. For \(n > 0 \),
\[
\sum_{k=1}^{n} 2^{k-1} k\nu_k(n) = \sum_{k=1}^{n} \mu_1(k)\bar{p}(n - k).
\]

Proof. The case \(m = -1 \) of Theorem 2 can be written as
\[
\frac{(-q; q)_\infty}{(q; q)_\infty} \sum_{n=1}^{\infty} (-1)^{n-1} q^n \frac{1}{1 - q^n} = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} 2^{k-1} k\nu_k(n) \right) q^n
\]
or
\[
\left(\sum_{n=0}^{\infty} \bar{p}(n)q^n \right) \left(\sum_{l=1}^{\infty} (r_0(n) - r_2(n))q^n \right) = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} 2^{k-1} k\nu_k(n) \right) q^n.
\]
Equating coefficients of \(q^n \) on each side of this relation gives the result. \(\square \)

Corollary 4.2. For \(n > 0 \),
\[
\tau(n) = \sum_{j=1}^{n} \sum_{k=1}^{j} (-2)^{k-1} k\mu_k(j)\bar{p}(n - j).
\]
Proof. We take into account the case \(m = 1 \) of Theorem 2, i.e.,
\[
\sum_{n=1}^{\infty} \tau(n)q^n = \left(\sum_{n=0}^{\infty} \bar{p}(n)q^n \right) \left(\sum_{k=1}^{\infty} \left(\sum_{k=1}^{n} (-2)^{k-1} k \mu_k(n) \right) q^n \right).
\]
\(\square \)

Corollaries 4.1 and 4.2 can be considered as specializations of the following result.

Corollary 4.3. Let \(m \) be a real or complex number. For \(n > 0 \),
\[
\sum_{k=1}^{n} (1 - m)^{k-1} k \nu_k(n) = \sum_{j=1}^{n} \sum_{k=1}^{j} (-1)^{j-p} \left(\frac{k}{p} \right) \mu_k(j) \bar{p}(n-j).
\](8)

Proof. By Theorems 2 and 3, we deduce the following relation
\[
\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (1 - m)^{k-1} k \nu_k(n) \right) q^n = \left(-q; q \right)_{\infty} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^n,
\]
that can be written as
\[
\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (1 - m)^{k-1} k \nu_k(n) \right) q^n = \left(\sum_{n=0}^{\infty} \bar{p}(n)q^n \right) \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^n \right).
\]
Considering the Cauchy product of two power series, the proof follows easily. \(\square \)

A new relationship between the partition functions \(\nu_k(n) \) and \(\mu_k(n) \) is given by the following result.

Corollary 4.4. Let \(p \) be a positive integer. For \(n > 0 \),
\[
\sum_{k=p}^{n} \binom{k}{p} \nu_k(n) = \sum_{j=1}^{n} \sum_{k=p}^{j} (-1)^{k-p} \binom{k}{p} \mu_k(j) \bar{p}(n-j).
\]

Proof. Equating coefficients of \(m^p \) on each side of the relation (8) we obtain
\[
\sum_{k=1}^{n} (-1)^{k-1} \binom{k-1}{p} k \nu_k(n) = \sum_{j=1}^{n} \sum_{k=1}^{j} (-1)^{k-1} \binom{k-1}{p} k \mu_k(j) \bar{p}(n-j).
\]
Multiplying the two members of this identity by \(\frac{(-1)^{k-1}}{p+1} \), the proof follows easily. \(\square \)

5. **On the number of 1’s in all partitions of \(n \)**

We denote by \(S_n(1) \) the number of 1’s in all partitions of \(n \). For example, the five partitions of 4 are
\[
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
\](9)
Thus
\[
S_4(1) = 0 + 1 + 0 + 2 + 4 = 7.
\]
Due to Riordan [23], the number \(S_n(1) \) can be expressed in terms of the partition function \(p(n) \), i.e.,
\[
S_n(1) = \sum_{k=0}^{n-1} p(k).
\](10)
A proof of this relation based on Fine’s identity [23] is given in Riordan’s book [23].

Theorem 2 allows us to express \(S_n(1) \) in terms of the number of partition of \(n \) into parts of \(k \) different magnitudes. Surprisingly, this relation was not observed for many years.

Corollary 5.1. Let \(n \) be a positive integer. Then
\[
S_n(1) = \sum_{k=1}^{n} k \nu_k(n).
\]
Proof. The case $m = 0$ of Theorem 2 can be written as
\[\frac{q}{1 - q} \cdot \frac{1}{(q; q)_{\infty}} = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k v_k(n) \right) q^n. \]
Considering the generating function of $p(n)$, i.e.,
\[\sum_{n=0}^{\infty} p(n) q^n = \frac{1}{(q; q)_{\infty}}, \]
the proof follows easily. □

Example. By (9), we see that $v_1(4) = 3$ and $v_2(4) = 2$. $S_4(1)$ equals 7 because $v_1(4) + 2v_2(4) = 7$.

As a consequence of Corollary 4.4, we obtain the following identity.

Corollary 5.2. Let n be a positive integer. Then
\[S_n(1) = \sum_{j=1}^{n} \sum_{k=1}^{j} (-1)^{k-1} k \mu_4(j) \bar{p}(n - j). \]

The kth generalized pentagonal number is denoted in this paper by G_k, i.e.,
\[G_k = \frac{1}{2} \left(\left\lfloor \frac{k}{2} \right\rfloor \right) \left(\left\lfloor \frac{3k + 1}{2} \right\rfloor \right). \]

A new recurrence relation for $v_k(n)$ involving the generalized pentagonal numbers is given by the following corollary.

Corollary 5.3. Let n be a positive integer. Then
\[\sum_{j=0}^{\infty} (-1)^{[j/2]} \sum_{k=1}^{n - G_j} k v_k(n - G_j) = 1. \]

Proof. Considering the case $m = 0$ of Theorem 2, namely
\[\frac{q}{1 - q} = (q; q)_{\infty} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k v_k(n) \right) q^n, \]
and Euler’s pentagonal number theorem
\[\sum_{n=0}^{\infty} (-1)^{[n/2]} q^n = (q; q)_{\infty}, \]
we obtain the relation
\[\sum_{n=1}^{\infty} q^n = \left(\sum_{n=0}^{\infty} (-1)^{[n/2]} q^n \right) \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} k v_k(n) \right) q^n \right). \]
Equating coefficients of q^n on each side of this identity gives the result. □

Proof. By (10) and Euler’s pentagonal number recurrence for the partitions function $p(n)$,
\[\sum_{n=0}^{\infty} (-1)^{[n/2]} p(n - G_j) = \delta_{0,n}, \]
we deduce that
\[\sum_{j=0}^{\infty} (-1)^{[j/2]} S_{n-G_j}(1) = 1, \]
with $S_n(1) = 0$ for $n \leq 0$. Then considering Corollary 5.1, the proof is finished. □
6. Connections with partitions into distinct odd parts

In this section, we denote by \(q_{\text{odd}}(n) \) the number of partitions of \(n \) into distinct odd parts. For example, \(q_{\text{odd}}(16) \) equals 5 because the five partitions in question are

\[
15 + 1 = 13 + 3 = 11 + 5 = 9 + 7 = 7 + 5 + 3 + 1.
\]

On the other hand, we denote by \(Q_n(1) \) the number of partitions of \(n \) into distinct odd parts with the small part 1. For example, \(Q_{16}(1) \) equals 2 because the two partitions in question are

\[
15 + 1 = 7 + 5 + 3 + 1.
\]

It is known that the generating functions for the numbers \(q_{\text{odd}}(n) \) and \(Q_n(1) \) are given by

\[
\sum_{n=0}^{\infty} q_{\text{odd}}(n) q^n = (-q; q^2)_\infty = \frac{1}{(q; -q)_\infty}
\]

and

\[
\sum_{n=0}^{\infty} Q_n(1) q^n = q(-q^3; q^2)_\infty = \frac{q}{1 + q} (-q, q^2)_\infty,
\]

respectively. It is clear that the number \(Q_n(1) \) can be expressed in terms of \(q_{\text{odd}}(n) \), namely

\[
Q_n(1) = \sum_{k=0}^{n-1} (-1)^{n-1-k} q_{\text{odd}}(k).
\]

Theorem 3 provides a new way to express \(Q_n(1) \) as a sum involving the partition function \(\mu_k(n) \).

Corollary 6.1. Let \(n \) be a positive integer. Then

\[
Q_n(1) = \sum_{k=1}^{n} (-1)^{n-k} k \mu_k(n).
\]

Proof. By Theorem 3, with \(m \) replaced by 0, we obtain the relation

\[
\frac{q}{1 - q} \cdot \frac{1}{(-q; q)_\infty} = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^n,
\]

that can be written as

\[
\sum_{n=1}^{\infty} \left(\sum_{k=0}^{n-1} (-1)^k q_{\text{odd}}(k) \right) q^n = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^n.
\]

The proof follows easily. □

The number of partitions of \(n \) into distinct parts is usually denoted by \(q(n) \). A new connection between \(q(n) \) and the function \(\mu_k(n) \) is given by the following identity.

Corollary 6.2. Let \(n \) be a positive integer. Then

\[
\sum_{j=0}^{n} \sum_{k=1}^{j} (-1)^{k-1} k \mu_k(j) q(n-j) = 1.
\]

Proof. We consider the case \(m = 0 \) of Theorem 3

\[
\frac{q}{1 - q} = (-q; q)_\infty \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^n
\]

and obtain the relation

\[
\sum_{n=1}^{\infty} q^n = \left(\sum_{n=0}^{\infty} q(n) q^n \right) \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^n \right).
\]

Equating coefficients of \(q^n \) on each side of this identity gives the result. □
In terms of $Q_n(1)$, Corollary 6.2 can be written as follows.

Corollary 6.3. Let n be a positive integer. Then

$$\sum_{k=1}^{n} (-1)^{k-1} Q_k(1) q(n - k) = 1.$$

Finally, we remark that $Q_n(1)$ can be expressed in terms of $S_n(1)$ and vice-versa.

Corollary 6.4. Let n be a positive integer. Then

$$Q_n(1) + \sum_{k=-\infty}^{\infty} (-1)^{n-k} S_{n-k^2}(1) = 0,$$

with $S_n(1) = 0$ for $n \leq 0$.

Proof. We consider Corollaries 5.1 and 6.1, and the case $m = 0$ of Corollary 1.5. □

Corollary 6.5. Let n be a positive integer. Then

$$S_n(1) = \sum_{j=1}^{n} (-1)^{j-1} Q_j(1) \bar{p}(n - j).$$

Proof. We consider Corollaries 5.2 and 6.1. □

7. Further identities involving $\tau(n)$

Few identities for the divisor function $\tau(n)$ have already been presented in some of the previous sections as corollaries of Theorems 2 and 3. In this section, we consider another special case of these theorems, namely $m = q$, to discover and prove new relationships between divisors and partitions into parts of k different magnitudes.

Corollary 7.1. Let n be a positive integer. Then

$$\sum_{k=1}^{n} \tau(k) = n + \sum_{j=1}^{[n/2]} \sum_{k=j}^{n-j} (-1)^{j-1} \binom{k}{j} v_k(n - j).$$

Proof. The case $m = q$ of Theorem 2 can be written as

$$\frac{1}{1 - q} \sum_{n=1}^{\infty} q^{2n-1} \left(\sum_{k=1}^{n} (1 - q)^{k-1} k u_k(n) \right) q^n.$$

It is not difficult to prove that the coefficient of q^n in the right hand side of this identity is given by

$$\sum_{j=1}^{[n/2]} \sum_{k=j}^{n-j} (-1)^{j-1} \binom{k}{j} v_k(n + 1 - j).$$

On the other hand, it is well-known that the generating function for the number of proper divisors of n is

$$\sum_{n=1}^{\infty} (\tau(n) - 1) q^n = \sum_{n=1}^{\infty} \frac{q^{2n}}{1 - q^n}.$$

Taking into account that the generating function of

$$a_0 + a_1 + \cdots + a_n$$

is given by

$$\frac{1}{1 - q} \sum_{n=0}^{\infty} a_n q^n,$$

the proof follows easily. □
We denote by $T_n(1)$ the number of partitions of n into exactly 2 types of parts, where one part is 1. For example, $T_5(1)$ equals 4 because the partitions in question are
\[4 + 1 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1. \]
Moreover, it is an easy exercise to prove that
\[T_{n+1}(1) = -n + \sum_{k=1}^{n} \tau(k). \]
In this context, Corollary 7.1 allows us to express the number $T_{n+1}(1)$ in terms of the function $\nu_k(n)$.

Corollary 7.2. Let n be a positive integer. Then
\[T_{n+1}(1) = \sum_{j=1}^{\lfloor n/2 \rfloor} \sum_{k=j}^{n-jj} (-1)^{j-1} \binom{k}{j} \nu_k(n-j). \]

The following result provides a relationship between $T_n(1)$ and $\mu_k(n)$.

Corollary 7.3. Let n be a positive integer. Then
\[\sum_{1 \leq j \leq \lfloor n/2 \rfloor} (-1)^j T_{n+1-2j}(1) = \sum_{j=1}^{\lfloor n/2 \rfloor} \sum_{k=j}^{n-jj} (-1)^{j-1} \binom{k}{j} \mu_k(n-j). \]

Proof. We consider the case $m = q$ of Theorem 3
\[\sum_{n=1}^{\infty} \frac{q^{2n-1}}{1-q^n} = \left(\frac{-q}{1-q} \right)_{\infty} \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^n, \]
that can be rewritten as
\[\left(\frac{-q}{1-q} \right)_{\infty} \sum_{n=1}^{\infty} \frac{q^{2n}}{1-q^n} = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^{n+1}, \]
or
\[\left(\sum_{n=1}^{\infty} (-1)^n q^n \right) \left(\sum_{n=0}^{\infty} T_{n+1}(1) q^n \right) = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{n} (-1)^{k-1} k \mu_k(n) \right) q^{n+1}. \]
It is not difficult to prove that the coefficient of q^n in the right hand side of the last identity is given by
\[\sum_{j=1}^{\lfloor n/2 \rfloor} \sum_{k=j}^{n-jj} (-1)^{j-1} \binom{k}{j} \mu_k(n-j). \]
The proof follows easily equating the coefficient of q^n on each side of the last identity. \[\square \]

8. **Concluding remarks**

A new technique for discovering and proving combinatorial identities has been introduced in the paper by Theorems 2 and 3. As consequences of these results, relationships between conjugacy classes in the general linear group $GL(n)$ and the partitions of n into parts of k different magnitudes have been derived as finite discrete convolutions. Also new identities involving divisors, overpartitions and other combinatorial objects have been presented as corollaries of these theorems.

References