Lambert series and conjugacy classes in GL

Mircea Merca

Academy of Romanian Scientists, Splaiul Independentei 54, Bucharest, 050094, Romania

ARTICLE INFO

Article history:

Received 28 June 2016
Received in revised form 25 April 2017
Accepted 26 April 2017

Keywords:

Conjugacy classes
Lambert series
Partitions
Overpartitions

Abstract

A relationship between the general linear group $G L(n, m)$ and integer partitions was investigated by Macdonald in order to calculate the number of conjugacy classes in $G L(n, m)$. In this paper, the author introduced two different factorizations for a special case of Lambert series in order to prove that the number of conjugacy classes in the general linear group $G L(n, m)$ and the number of partitions of n into k different magnitudes are related by a finite discrete convolution. New identities involving overpartitions, partitions into k different magnitudes and other combinatorial objects are discovered and proved in this context.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let $v_{k}(n)$ be the number of partitions of the positive integer n that have exactly k distinct values for the parts. For example, $v_{3}(8)=5$ because the five partitions in question are

$$
5+2+1=4+3+1=4+2+1+1=3+2+2+1=3+2+1+1+1
$$

MacMahon [19] proved in 1921 that

$$
N_{k}(q)=\sum_{n=0}^{\infty} v_{k}(n) q^{n}=\sum_{1 \leqslant n_{1}<n_{2}<\cdots<n_{k}} \frac{q^{n_{1}+n_{2}+\cdots+n_{k}}}{\left(1-q^{n_{1}}\right)\left(1-q^{n_{2}}\right) \cdots\left(1-q^{n_{k}}\right)}
$$

and

$$
M_{k}(q)=\sum_{n=0}^{\infty} \mu_{k}(n) q^{n}=\sum_{1 \leqslant n_{1}<n_{2}<\cdots<n_{k}} \frac{q^{n_{1}+n_{2}+\cdots+n_{k}}}{\left(1+q^{n_{1}}\right)\left(1+q^{n_{2}}\right) \cdots\left(1+q^{n_{k}}\right)},
$$

where $(-1)^{k} \mu_{k}(n)$ is the difference between the number of partitions of n into even number parts and odd number parts that have exactly k distinct values for the parts.

In 1999, Andrews [1] found that $N_{k}(q)$ satisfies the following identity

$$
\begin{equation*}
N_{k}(q)=\frac{1}{(q ; q)_{\infty}} \sum_{n=0}^{\infty}(-1)^{n-k} \frac{\binom{n}{k} q^{\binom{n+1}{2}}}{(q ; q)_{n}}, \quad|q|<1, \tag{1}
\end{equation*}
$$

where

$$
(a ; q)_{n}=(1-a)(1-a q)\left(1-a q^{2}\right) \ldots\left(1-a q^{n-1}\right)
$$

[^0]is the q-shifted factorial, with $(a ; q)_{0}=1$. Recently, Merca [21] proved a similar result for $M_{k}(q)$, i.e.,
\[

$$
\begin{equation*}
M_{k}(q)=\frac{1}{(-q ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{\binom{n}{k} q^{\binom{n+1}{2}}}{(q ; q)_{n}}, \tag{2}
\end{equation*}
$$

\]

considering the following truncated forms of $N_{k}(q)$ and $M_{k}(q)$.
Theorem 1. Let k and n be positive integers such that $k \leqslant n$. For $|q|<1$,

$$
\left.\sum_{1 \leqslant n_{1}<n_{2}<\cdots<n_{k} \leqslant n} \frac{q^{n_{1}+n_{2}+\cdots+n_{k}}}{\left(1 \pm q^{n_{1}}\right)\left(1 \pm q^{n_{2}}\right) \cdots\left(1 \pm q^{n_{k}}\right)}=\frac{1}{(\mp q ; q)_{n}} \sum_{j=k}^{n}(\pm 1)^{j-k} q^{(j+1} \begin{array}{c}
2 \\
2
\end{array}\right)\binom{j}{k}\left[\begin{array}{l}
n \\
j
\end{array}\right],
$$

where

$$
\left[\begin{array}{ll}
n \\
k
\end{array}\right]= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } k \in\{0,1, \ldots, n\}, \\
0, & \text { otherwise }\end{cases}
$$

is the q-binomial coefficient.
As corollaries of this result, some relations involving $v_{k}(n), \mu_{k}(n)$ and the number of partitions of n into exactly k distinct parts were deduced by q-series manipulation [21]. We remark that the truncated theta series were recently studied in several papers by Andrews and Merca [2,3], Chan, Ho and Mao [7] Guo and Zeng [11], He, Ji and Zang [12], Kolitsch [13] Mao [20], and Yee [24]. Very recently, Merca [22] has been provided two recurrence relations for computing the numbers $v_{k}(n)$ and $\mu_{k}(n)$ that do not involve other partition functions.

In this paper, motivated by these results, we shall provide new relations that involve the functions $v_{k}(n)$ and $\mu_{k}(n)$. To this end, we consider the well-known Lambert series

$$
\sum_{n=1}^{\infty} a_{n} \frac{q^{n}}{1-q^{n}}
$$

and introduce the following factorizations for the special case $a_{n}=m^{n}$, with m a real or complex number.
Theorem 2. Let m be a real or complex number. For $|q|<1$,

$$
\sum_{n=1}^{\infty} m^{n-1} \frac{q^{n}}{1-q^{n}}=\frac{(q ; q)_{\infty}}{(m q ; q)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(1-m)^{k-1} k v_{k}(n)\right) q^{n},
$$

with the convention $0^{0}=1$ in the case $m \in\{0,1\}$.
Theorem 3. Let m be a real or complex number. For $|q|<1$,

$$
\sum_{n=1}^{\infty} m^{n-1} \frac{q^{n}}{1-q^{n}}=\frac{(-q ; q)_{\infty}}{(m q ; q)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

with the convention $0^{0}=1$ in the case $m \in\{-1,0\}$.
The general linear group of degree n over any field F is the set of $n \times n$ invertible matrices with entries from F together with the matrix multiplication as the group operation. Typical notation is $G L_{n}(F)$ or $G L(n, F)$, or simply $G L(n)$ if the field is understood. If F is a finite field with m elements, then we write $G L(n, m)$ instead of $G L_{n}(F)$ or $G L(n, F)$. The numbers of conjugacy classes in some finite classical groups were investigated in 1981 by Macdonald [17]. For a positive integer m, we denoted by $c_{n}(m)$ the number of conjugacy classes in the finite group $\operatorname{GL}(n, m)$. Due to Feit and Fain [10], the generating function for $c_{n}(m)$ is given by

$$
\sum_{n=0}^{\infty} c_{n}(m) q^{n}=\frac{(q ; q)_{\infty}}{(m q ; q)_{\infty}} .
$$

For $m=1$, we have $c_{n}(1)=\delta_{0, n}$, where $\delta_{i, j}$ is the Kronecker delta. By Theorem 2, we deduce that the number of conjugacy classes in $G L(n, m)$ and the number of partitions of n into parts of k different magnitudes are related by the following convolution.

Corollary 1.1. Let m and n be positive integers. Then

$$
\sum_{d \mid n} m^{d-1}=\sum_{j=1}^{n} \sum_{k=1}^{j}(1-m)^{k-1} k v_{k}(j) c_{n-j}(m) .
$$

A similar convolution for the number of conjugacy classes in $G L(n, m)$ and $\mu_{k}(n)$ can be deduced from Theorem 3.
Corollary 1.2. Let m and n be positive integers. Then

$$
\sum_{j=1-\lceil\sqrt{n}\rceil}^{\lceil\sqrt{n}\rceil-1}(-1)^{j} \sum_{d \mid n-j^{2}} m^{d-1}=\sum_{j=1}^{n} \sum_{k=1}^{j}(-1-m)^{k-1} k \mu_{k}(j) c_{n-j}(m) .
$$

In multiplicative number theory, the divisor function $\tau(n)$ is defined as the number of divisors of n, unity and n itself included, i.e.,

$$
\tau(n)=\sum_{d \mid n} 1 .
$$

We use the convention that $\tau(n)=0$ for $n \leqslant 0$. We denote by $\tau_{o}(n)$ the number of odd divisors of n and by $\tau_{e}(n)$ the number of even divisors of n. The identities $\tau(n)=v_{1}(n)$ and $\tau_{o}(n)-\tau_{e}(n)=\mu_{1}(n)$ are trivial. The case $m=1$ of Corollary 1.2 provides a connection between the functions $\mu_{k}(n)$ and $\tau(n)$.

Corollary 1.3. Let n be a positive integer. Then

$$
\sum_{j=1-\lceil\sqrt{n}\rceil}^{\lceil\sqrt{n}\rceil-1}(-1)^{j} \tau\left(n-j^{2}\right)=\sum_{k=1}^{n}(-2)^{k-1} k \mu_{k}(n) .
$$

A new expansion for $\tau_{0}(n)-\tau_{e}(n)$ in terms of $v_{k}(n)$ can be easily obtained from Theorem 2 replacing m by -1 .
Corollary 1.4. Let n be a positive integer. Then

$$
\tau_{0}(n)-\tau_{e}(n)=\sum_{j=1-\lceil\sqrt{n}\rceil}^{\lceil\sqrt{n}\rceil-1}(-1)^{j} \sum_{k=1}^{n-j^{2}} 2^{k-1} k v_{k}\left(n-j^{2}\right)
$$

On the other hand, Corollaries 1.3 and 1.4 are special cases of the following consequence of Theorems 2 and 3.
Corollary 1.5. Let m be a real or complex number. For $n>0$,

$$
\begin{equation*}
\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)=\sum_{j=1-\lceil\sqrt{n}\rceil}^{\lceil\sqrt{n}\rceil-1}(-1)^{j} \sum_{k=1}^{n-j^{2}}(1-m)^{k-1} k v_{k}\left(n-j^{2}\right) \tag{3}
\end{equation*}
$$

with the convention $0^{0}=1$ in the case $m \in\{-1,1\}$.
Equating coefficients of m^{p} on each side of this relation gives the following relationship between the function $v_{k}(n)$ and $\mu_{k}(n)$.

Corollary 1.6. Let p be a positive integer. For $n>0$,

$$
\sum_{k=p}^{n}(-1)^{k-p}\binom{k}{p} \mu_{k}(n)=\sum_{j=1-\lceil\sqrt{n}\rceil}^{\lceil\sqrt{n}\rceil-1} \sum_{k=p}^{n-j^{2}}(-1)^{j}\binom{k}{p} v_{k}\left(n-j^{2}\right) .
$$

As far as we know, the general identities provided by Theorems 2 and 3 are new. A lot of identities involving $v_{k}(n)$ and $\mu_{k}(n)$ can be derived as consequences of these theorems. Some of them are presented in this paper. Combinatorial interpretations for

$$
\sum_{k=1}^{n} k v_{k}(n) \quad \text { and } \quad \sum_{k=1}^{n}(-1)^{n-k} k \mu_{k}(n)
$$

are introduced in this context (see Corollaries 5.1 and 6.1).

2. Proofs of Theorems 2 and 3

Being given a set of variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, recall [18] that the k th elementary symmetric function $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is given by

$$
e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

for $k=1,2, \ldots, n$. We set $e_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ by convention. For $k<0$ or $k>n$, we set $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$.

The elementary symmetric functions are characterized by the following identity of formal power series in t :

$$
E(t)=\sum_{k=0}^{n} e_{k}\left(x_{1}, \ldots, x_{n}\right) t^{k}=\prod_{k=1}^{n}\left(1+x_{k} t\right)
$$

For $k=1,2, \ldots, n$, we consider that $1+x_{k} t \neq 0$. On the one hand, we have

$$
\begin{equation*}
\frac{d}{d t} \ln (E(t))=\sum_{k=1}^{n} \frac{d}{d t} \ln \left(1+x_{k} t\right)=\sum_{k=1}^{n} \frac{x_{k}}{1+x_{k} t} \tag{4}
\end{equation*}
$$

On the other hand, we can write

$$
\begin{equation*}
\frac{d}{d t} \ln (E(t))=\left(\prod_{k=1}^{n} \frac{1}{1+x_{k} t}\right)\left(\sum_{k=1}^{n} k e_{k}\left(x_{1}, \ldots, x_{n}\right) t^{k-1}\right) \tag{5}
\end{equation*}
$$

Thus, by (4) and (5), we derive

$$
\sum_{k=1}^{n} \frac{x_{k}}{1+x_{k} t}=\left(\prod_{k=1}^{n} \frac{1}{1+x_{k} t}\right)\left(\sum_{k=1}^{n} k e_{k}\left(x_{1}, \ldots, x_{n}\right) t^{k-1}\right)
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ and t are independent variables such that $1+x_{k} t \neq 0$ for $k=1,2, \ldots, n$.
By the last relation, with x_{k} replaced by $\frac{q^{k}}{1 \mp q^{k}}$ and t replaced by $\pm 1-m$, we obtain the identity

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{q^{k}}{1-m q^{k}}=\frac{(\pm q ; q)_{n}}{(m q ; q)_{n}} \sum_{k=1}^{n}(\pm 1-m)^{k-1} k e_{k}\left(\frac{q}{1 \mp q}, \ldots, \frac{q^{n}}{1 \mp q^{n}}\right) \tag{6}
\end{equation*}
$$

Taking into account that $N_{k}(q)$ and $M_{k}(q)$ are specializations of elementary symmetric functions, i.e.,

$$
\sum_{n=0}^{\infty} v_{k}(n) q^{n}=e_{k}\left(\frac{q}{1-q}, \frac{q^{2}}{1-q^{2}}, \frac{q^{3}}{1-q^{3}}, \ldots\right)
$$

and

$$
\sum_{n=0}^{\infty} \mu_{k}(n) q^{n}=e_{k}\left(\frac{q}{1+q}, \frac{q^{2}}{1+q^{2}}, \frac{q^{3}}{1+q^{3}}, \ldots\right)
$$

Theorems 2 and 3 are the limiting case $n \rightarrow \infty$ of the relation (6). In addition, we have invoked the well-known identity

$$
\sum_{n=1}^{\infty} m^{n} \frac{q^{n}}{1-q^{n}}=\sum_{n=1}^{\infty} \frac{m q^{n}}{1-m q^{n}}
$$

3. Proofs of Corollaries 1.1, 1.2 and 1.5

In general, for $a_{n}(n=1,2, \ldots)$ real or complex numbers we have

$$
\sum_{n=1}^{\infty} a_{n} \frac{q^{n}}{1-q^{n}}=\sum_{n=1}^{\infty}\left(\sum_{d \mid n} a_{n}\right) q^{n}, \quad|q|<1
$$

So Theorem 2 can be written as

$$
\sum_{n=1}^{\infty}\left(\sum_{d \mid n} m^{n-1}\right) q^{n}=\left(\sum_{n=0}^{\infty} c_{n}(m) q^{n}\right)\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(1-m)^{k-1} k v_{k}(n)\right) q^{n}\right)
$$

Using the well-known Cauchy products of two power series

$$
\left(\sum_{n=0}^{\infty} x_{n} q^{n}\right)\left(\sum_{n=0}^{\infty} y_{n} q^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} x_{k} y_{n-k}\right) q^{n}
$$

the proof of Corollary 1.1 follows easily.
By Theorem 3, we derived the identity

$$
\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} \sum_{n=1}^{\infty} m^{n-1} \frac{q^{n}}{1-q^{n}}=\frac{(q ; q)_{\infty}}{(m q ; q)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

From this identity, considering the relation

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} \tag{7}
\end{equation*}
$$

we obtain

$$
\left(\sum_{n=-\infty}^{\infty} q^{n^{2}}\right)\left(\sum_{n=1}^{\infty}\left(\sum_{d \mid n} m^{n-1}\right) q^{n}\right)=\left(\sum_{n=0}^{\infty} c_{n}(m) q^{n}\right)\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)\right) q^{n}\right)
$$

Equating coefficients of q^{n} on each side of this relation, the proof of Corollary 1.2 follows easily.
By Theorems 2 and 3, we obtain the identity

$$
\frac{(q ; q)_{\infty}}{(m q ; q)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(1-m)^{k-1} k v_{k}(n)\right) q^{n}=\frac{(-q ; q)_{\infty}}{(m q ; q)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

or

$$
\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(1-m)^{k-1} k v_{k}(n)\right) q^{n}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

Taking into account (7), the proof of Corollary 1.5 follows easily applying again the Cauchy multiplication of two power series.

4. Connections with overpartitions

In 2003 Corteel and Lovejoy introduced a new and exciting component of the theory of partitions which are called overpartitions [4-6,8,9,14-16]. An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in which the first occurrence of a number may be overlined. For example, the 8 overpartitions of 3 are

$$
3, \quad \overline{3}, \quad 2+1, \quad \overline{2}+1, \quad 2+\overline{1}, \quad \overline{2}+\overline{1}, \quad 1+1+1 \quad \text { and } \quad \overline{1}+1+1 .
$$

The number of overpartitions of n is usually denoted by $\bar{p}(n)$. Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary partition, we have the generating function

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\frac{(-q, q)_{\infty}}{(q ; q)_{\infty}}
$$

Some connections between overpartitions and partitions into parts of k magnitudes are present in this section.
Corollary 4.1. For $n>0$,

$$
\sum_{k=1}^{n} 2^{k-1} k v_{k}(n)=\sum_{k=1}^{n} \mu_{1}(k) \bar{p}(n-k)
$$

Proof. The case $m=-1$ of Theorem 2 can be written as

$$
\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{q^{n}}{1-q^{n}}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} 2^{k-1} k v_{k}(n)\right) q^{n}
$$

or

$$
\left(\sum_{n=0}^{\infty} \bar{p}(n) q^{n}\right)\left(\sum_{n=1}^{\infty}\left(\tau_{0}(n)-\tau_{e}(n)\right) q^{n}\right)=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} 2^{k-1} k v_{k}(n)\right) q^{n} .
$$

Equating coefficients of q^{n} on each side of this relation gives the result.
Corollary 4.2. For $n>0$,

$$
\tau(n)=\sum_{j=1}^{n} \sum_{k=1}^{j}(-2)^{k-1} k \mu_{k}(j) \bar{p}(n-j)
$$

Proof. We take into account the case $m=1$ of Theorem 2, i.e.,

$$
\sum_{n=1}^{\infty} \tau(n) q^{n}=\left(\sum_{n=0}^{\infty} \bar{p}(n) q^{n}\right)\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-2)^{k-1} k \mu_{k}(n)\right) q^{n}\right)
$$

Corollaries 4.1 and 4.2 can be considered as specializations of the following result.
Corollary 4.3. Let m be a real or complex number. For $n>0$,

$$
\begin{equation*}
\sum_{k=1}^{n}(1-m)^{k-1} k v_{k}(n)=\sum_{j=1}^{n} \sum_{k=1}^{j}(-1-m)^{k-1} k \mu_{k}(j) \bar{p}(n-j) \tag{8}
\end{equation*}
$$

Proof. By Theorems 2 and 3, we deduce the following relation

$$
\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(1-m)^{k-1} k v_{k}(n)\right) q^{n}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

that can be written as

$$
\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(1-m)^{k-1} k v_{k}(n)\right) q^{n}=\left(\sum_{n=0}^{\infty} \bar{p}(n) q^{n}\right)\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-m)^{k-1} k \mu_{k}(n)\right) q^{n}\right)
$$

Considering the Cauchy product of two power series, the proof follows easily.
A new relationship between the partition functions $v_{k}(n)$ and $\mu_{k}(n)$ is given by the following result.
Corollary 4.4. Let p be a positive integer. For $n>0$,

$$
\sum_{k=p}^{n}\binom{k}{p} v_{k}(n)=\sum_{j=1}^{n} \sum_{k=p}^{j}(-1)^{k-p}\binom{k}{p} \mu_{k}(j) \bar{p}(n-j)
$$

Proof. Equating coefficients of m^{p} on each side of the relation (8) we obtain

$$
\sum_{k=1}^{n}(-1)^{p}\binom{k-1}{p} k v_{k}(n)=\sum_{j=1}^{n} \sum_{k=1}^{j}(-1)^{k-1}\binom{k-1}{p} k \mu_{k}(j) \bar{p}(n-j)
$$

Multiplying the two members of this identity by $\frac{(-1)^{p}}{p+1}$, the proof follows easily.

5. On the number of 1 's in all partitions of n

We denote by $S_{n}(1)$ the number of 1 's in all partitions of n. For example, the five partitions of 4 are

$$
\begin{equation*}
4=3+1=2+2=2+1+1=1+1+1+1 \tag{9}
\end{equation*}
$$

Thus

$$
S_{4}(1)=0+1+0+2+4=7
$$

Due to Riordan [23], the number $S_{n}(1)$ can be expressed in terms of the partition function $p(n)$, i.e.,

$$
\begin{equation*}
S_{n}(1)=\sum_{k=0}^{n-1} p(k) \tag{10}
\end{equation*}
$$

A proof of this relation based on Fine's identity [23] is given in Riordan's book [23].
Theorem 2 allows us to express $S_{n}(1)$ in terms of the number of partition of n into parts of k different magnitudes. Surprisingly, this relation was not observed for many years.

Corollary 5.1. Let n be a positive integer. Then

$$
S_{n}(1)=\sum_{k=1}^{n} k v_{k}(n)
$$

Proof. The case $m=0$ of Theorem 2 can be written as

$$
\frac{q}{1-q} \cdot \frac{1}{(q ; q)_{\infty}}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k v_{k}(n)\right) q^{n}
$$

Considering the generating function of $p(n)$, i.e.,

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}
$$

the proof follows easily.
Example. By (9), we see that $v_{1}(4)=3$ and $v_{2}(4)=2 . S_{4}(1)$ equals 7 because

$$
v_{1}(4)+2 v_{2}(4)=7
$$

As a consequence of Corollary 4.4, we obtain the following identity.
Corollary 5.2. Let n be a positive integer. Then

$$
S_{n}(1)=\sum_{j=1}^{n} \sum_{k=1}^{j}(-1)^{k-1} k \mu_{k}(j) \bar{p}(n-j)
$$

The k th generalized pentagonal number is denoted in this paper by G_{k}, i.e.,

$$
G_{k}=\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{3 k+1}{2}\right\rceil
$$

A new recurrence relation for $v_{k}(n)$ involving the generalized pentagonal numbers is given by the following corollary.
Corollary 5.3. Let n be a positive integer. Then

$$
\sum_{j=0}^{\infty}(-1)^{[j / 2]} \sum_{k=1}^{n-G_{j}} k v_{k}\left(n-G_{j}\right)=1 .
$$

Proof. Considering the case $m=0$ of Theorem 2, namely

$$
\frac{q}{1-q}=(q ; q)_{\infty} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k v_{k}(n)\right) q^{n}
$$

and Euler's pentagonal number theorem

$$
\sum_{n=0}^{\infty}(-1)^{\lceil n / 2\rceil} q^{G_{n}}=(q ; q)_{\infty}
$$

we obtain the relation

$$
\sum_{n=1}^{\infty} q^{n}=\left(\sum_{n=0}^{\infty}(-1)^{\lceil n / 2\rceil} q^{G_{n}}\right)\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} k v_{k}(n)\right) q^{n}\right)
$$

Equating coefficients of q^{n} on each side of this identity gives the result.
Proof. By (10) and Euler's pentagonal number recurrence for the partitions function $p(n)$,

$$
\sum_{n=0}^{\infty}(-1)^{[j / 2\rceil} p\left(n-G_{j}\right)=\delta_{0, n}
$$

we deduce that

$$
\sum_{j=0}^{\infty}(-1)^{[j / 2]} S_{n-G_{j}}(1)=1
$$

with $S_{n}(1)=0$ for $n \leqslant 0$. Then considering Corollary 5.1, the proof is finished.

6. Connections with partitions into distinct odd parts

In this section, we denote by $q_{\text {odd }}(n)$ the number of partitions of n into distinct odd parts. For example, $q_{\text {odd }}(16)$ equals 5 because the five partitions in question are

$$
15+1=13+3=11+5=9+7=7+5+3+1
$$

On the other hand, we denote by $Q_{n}(1)$ the number of partitions of n into distinct odd parts with the small part 1 . For example, $Q_{16}(1)$ equals 2 because the two partitions in question are

$$
15+1=7+5+3+1
$$

It is known that the generating functions for the numbers $q_{\text {odd }}(n)$ and $Q_{n}(1)$ are given by

$$
\sum_{n=0}^{\infty} q_{o d d}(n) q^{n}=\left(-q ; q^{2}\right)_{\infty}=\frac{1}{(q ;-q)_{\infty}}
$$

and

$$
\sum_{n=0}^{\infty} \mathrm{Q}_{n}(1) q^{n}=q\left(-q^{3} ; q^{2}\right)_{\infty}=\frac{q}{1+q} \cdot\left(-q, q^{2}\right)_{\infty}
$$

respectively. It is clear that the number $Q_{n}(1)$ can be expressed in terms of $q_{\text {odd }}(n)$, namely

$$
Q_{n}(1)=\sum_{k=0}^{n-1}(-1)^{n-1-k} q_{\text {odd }}(k) .
$$

Theorem 3 provides a new way to express $Q_{n}(1)$ as a sum involving the partition function $\mu_{k}(n)$.
Corollary 6.1. Let n be a positive integer. Then

$$
\mathrm{Q}_{n}(1)=\sum_{k=1}^{n}(-1)^{n-k} k \mu_{k}(n) .
$$

Proof. By Theorem 3, with m replaced by 0 , we obtain the relation

$$
\frac{q}{1-q} \cdot \frac{1}{(-q ; q)_{\infty}}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

that can be written as

$$
\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n-1}(-1)^{k} q_{\text {odd }}(k)\right) q^{n}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1)^{k-1} k \mu_{k}(n)\right) q^{n} .
$$

The proof follows easily.
The number of partitions of n into distinct parts is usually denoted by $q(n)$. A new connection between $q(n)$ and the function $\mu_{k}(n)$ is given by the following identity.

Corollary 6.2. Let n be a positive integer. Then

$$
\sum_{j=0}^{n} \sum_{k=1}^{j}(-1)^{k-1} k \mu_{k}(j) q(n-j)=1 .
$$

Proof. We consider the case $m=0$ of Theorem 3

$$
\frac{q}{1-q}=(-q ; q)_{\infty} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

and obtain the relation

$$
\sum_{n=1}^{\infty} q^{n}=\left(\sum_{n=0}^{\infty} q(n) q^{n}\right)\left(\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1)^{k-1} k \mu_{k}(n)\right) q^{n}\right)
$$

Equating coefficients of q^{n} on each side of this identity gives the result.

In terms of $Q_{n}(1)$, Corollary 6.2 can be written as follows.
Corollary 6.3. Let n be a positive integer. Then

$$
\sum_{k=1}^{n}(-1)^{k-1} Q_{k}(1) q(n-k)=1
$$

Finally, we remark that $Q_{n}(1)$ can be expressed in terms of $S_{n}(1)$ and vice-versa.
Corollary 6.4. Let n be a positive integer. Then

$$
Q_{n}(1)+\sum_{k=-\infty}^{\infty}(-1)^{n-k} S_{n-k^{2}}(1)=0
$$

with $S_{n}(1)=0$ for $n \leqslant 0$.
Proof. We consider Corollaries 5.1 and 6.1, and the case $m=0$ of Corollary 1.5.
Corollary 6.5. Let n be a positive integer. Then

$$
S_{n}(1)=\sum_{j=1}^{n}(-1)^{j-1} Q_{j}(1) \bar{p}(n-j)
$$

Proof. We consider Corollaries 5.2 and 6.1.

7. Further identities involving $\boldsymbol{\tau}(\boldsymbol{n})$

Few identities for the divisor function $\tau(n)$ have already been presented in some of the previous sections as corollaries of Theorems 2 and 3. In this section, we consider another special case of these theorems, namely $m=q$, to discover and prove new relationships between divisors and partitions into parts of k different magnitudes.

Corollary 7.1. Let n be a positive integer. Then

$$
\sum_{k=1}^{n} \tau(k)=n+\sum_{j=1}^{\lfloor n / 2\rfloor} \sum_{k=j}^{n-j}(-1)^{j-1} j\binom{k}{j} v_{k}(n-j)
$$

Proof. The case $m=q$ of Theorem 2 can be written as

$$
\frac{1}{1-q} \sum_{n=1}^{\infty} \frac{q^{2 n-1}}{1-q^{n}}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(1-q)^{k-1} k v_{k}(n)\right) q^{n}
$$

It is not difficult to prove that the coefficient of q^{n} in the right hand side of this identity is given by

$$
\sum_{j=1}^{\lceil n / 2\rceil} \sum_{k=j}^{n+1-j}(-1)^{j-1} j\binom{k}{j} v_{k}(n+1-j)
$$

On the other hand, it is well-known that the generating function for the number of proper divisors of n is

$$
\sum_{n=1}^{\infty}(\tau(n)-1) q^{n}=\sum_{n=1}^{\infty} \frac{q^{2 n}}{1-q^{n}}
$$

Taking into account that the generating function of

$$
a_{0}+a_{1}+\cdots+a_{n}
$$

is given by

$$
\frac{1}{1-q} \sum_{n=0}^{\infty} a_{n} q^{n}
$$

the proof follows easily.

We denote by $T_{n}(1)$ the number of partitions of n into exactly 2 types of parts, where one part is 1 . For example, $T_{5}(1)$ equals 4 because the partitions in question are

$$
4+1=3+1+1=2+2+1=2+1+1+1
$$

Moreover, it is an easy exercise to prove that

$$
T_{n+1}(1)=-n+\sum_{k=1}^{n} \tau(k)
$$

In this context, Corollary 7.1 allows us to express the number $T_{n+1}(1)$ in terms of the function $v_{k}(n)$.
Corollary 7.2. Let n be a positive integer. Then

$$
T_{n+1}(1)=\sum_{j=1}^{\lfloor n / 2\rfloor} \sum_{k=j}^{n-j}(-1)^{j-1} j\binom{k}{j} v_{k}(n-j) .
$$

The following result provides a relationship between $T_{n}(1)$ and $\mu_{k}(n)$.
Corollary 7.3. Let n be a positive integer. Then

$$
\sum_{1-\lceil\sqrt{n+1}\rceil}^{\lceil\sqrt{n+1}\rceil-1}(-1)^{j} T_{n+1-j^{2}}(1)=\sum_{j=1}^{\lfloor n / 2\rfloor} \sum_{k=j}^{n-j}(-1)^{k-1} j\binom{k}{j} \mu_{k}(n-j)
$$

Proof. We consider the case $m=q$ of Theorem 3

$$
\sum_{n=1}^{\infty} \frac{q^{2 n-1}}{1-q^{n}}=\frac{(-q ; q)_{\infty}}{\left(q^{2} ; q\right)_{\infty}} \sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-q)^{k-1} k \mu_{k}(n)\right) q^{n}
$$

that can be rewritten as

$$
\frac{(q ; q)_{\infty}}{(-q ; q)_{\infty}} \cdot \frac{1}{1-q} \sum_{n=1}^{\infty} \frac{q^{2 n}}{1-q^{n}}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-q)^{k-1} k \mu_{k}(n)\right) q^{n+1}
$$

or

$$
\left(\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}\right)\left(\sum_{n=0}^{\infty} T_{n+1}(1) q^{n}\right)=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n}(-1-q)^{k-1} k \mu_{k}(n)\right) q^{n+1}
$$

It is not difficult to prove that the coefficient of q^{n} in the right hand side of the last identity is given by

$$
\sum_{j=1}^{\lfloor n / 2\rfloor} \sum_{k=j}^{n-j}(-1)^{k-1} j\binom{k}{j} \mu_{k}(n-j)
$$

The proof follows easily equating the coefficient of q^{n} on each side of the last identity.

8. Concluding remarks

A new technique for discovering and proving combinatorial identities has been introduced in the paper by Theorems 2 and 3. As consequences of these results, relationships between conjugacy classes in the general linear group $G L(n)$ and the partitions of n into parts of k different magnitudes have been derived as finite discrete convolutions. Also new identities involving divisors, overpartitions and other combinatorial objects have been presented as corollaries of these theorems.

References

[^1][9] S. Corteel, J. Lovejoy, A.J. Yee, Overpartitions and generating functions for generalized Frobenius partitions, in: Mathematics and Computer Science III: Algorithms, Trees, Combinatorics, and Probabilities, 2004, pp. 15-24.
[10] W. Feit, N.J. Fine, Pairs of commuting matrices over a finite field, Duke Math. J. 27 (1960) 91-94.
[11] V.J.W. Guo, J. Zeng, Two truncated identities of Gauss, J. Combin. Theory Ser. A 120 (2013) 700-707.
[12] T.Y. He, K.Q. Ji, W.J.T. Zang, Bilateral truncated Jacobi's identity, European J. Combin. 51 (2016) 255-267.
[13] L. Kolitsch, Another approach to the truncated pentagonal number theorem, Int. J. Number Theory 11 (5) (2015) 1563-1569.
[14] J. Lovejoy, Gordon's theorem for overpartitions, J. Combin. Theory Ser. A 103 (2003) 393-401.
[15] J. Lovejoy, Overpartition theorems of the Rogers-Ramanujan type, J. Lond. Math. Soc. 69 (2004) 562-574.
[16] J. Lovejoy, Rank and conjugation for the Frobenius representation of an overpartition, Ann. Comb. 9 (2005) 321-334.
[17] I.G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bull. Aust. Math. Soc. 23 (1981) 23-48.
[18] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Clarendon Press, Oxford, 1995.
[19] P.A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. Lond. Math. Soc. s2-19 (1) (1921) 75-113.
[20] R. Mao, Proofs of two conjectures on truncated series, J. Combin. Theory Ser. A 130 (2015) 15-25.
[21] M. Merca, A note on the partitions involving parts of k different magnitudes, J. Number Theory 162 (2016) 23-34.
[22] M. Merca, On the number of partitions into parts of k different magnitudes, Discrete Math. 340 (2017) 644-648.
[23] J. Riordan, Combinatorial Identities, Wiley, 1968.
[24] A.J. Yee, The truncated Jacobi triple product theorem, J. Combin. Theory Ser. A 130 (2015) 1-14.

[^0]: E-mail address: mircea.merca@profinfo.edu.ro.

[^1]: [1] G.E. Andrews, Stacked lattice boxes, Ann. Comb. 3 (1999) 115-130.
 [2] G.E. Andrews, M. Merca, The truncated pentagonal number theorem, J. Combin. Theory Ser. A 119 (2012) 1639-1643.
 [3] G.E. Andrews, M. Merca, Truncated theta series and a problem of Guo and Zeng, preprint.
 [4] K. Bringmann, J. Lovejoy, Overpartitions and class numbers of binary quadratic forms, Proc. Natl. Acad. Sci. USA 106 (14) (2009) $5513-5516$.
 [5] K. Bringmann, J. Lovejoy, R. Osburn, Rank and crank moments for overpartitions, J. Number Theory 129 (2009) 1758-1772.
 [6] K. Bringmann, A. Holroyd, K. Mahlburg, M. Vlasenko, k-run overpartitions and mock theta functions, Q. J. Math. 64 (4) (2013) 1009-1021.
 [7] S.H. Chan, T.P.N. Ho, R. Mao, Truncated series from the quintuple product identity, J. Number Theory 169 (2016) 420-438.
 [8] S. Corteel, J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (4) (2004) 1623-1635.

