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a b s t r a c t

A relationship between the general linear group GL(n,m) and integer partitions was inves-
tigated by Macdonald in order to calculate the number of conjugacy classes in GL(n,m). In
this paper, the author introduced two different factorizations for a special case of Lambert
series in order to prove that the number of conjugacy classes in the general linear group
GL(n,m) and the number of partitions of n into k differentmagnitudes are related by a finite
discrete convolution. New identities involving overpartitions, partitions into k different
magnitudes and other combinatorial objects are discovered and proved in this context.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let vk(n) be the number of partitions of the positive integer n that have exactly k distinct values for the parts. For example,
v3(8) = 5 because the five partitions in question are

5 + 2 + 1 = 4 + 3 + 1 = 4 + 2 + 1 + 1 = 3 + 2 + 2 + 1 = 3 + 2 + 1 + 1 + 1.

MacMahon [19] proved in 1921 that

Nk(q) =

∞∑
n=0

vk(n)qn =

∑
1⩽n1<n2<···<nk

qn1+n2+···+nk

(1 − qn1 )(1 − qn2 ) · · · (1 − qnk )

and

Mk(q) =

∞∑
n=0

µk(n)qn =

∑
1⩽n1<n2<···<nk

qn1+n2+···+nk

(1 + qn1 )(1 + qn2 ) · · · (1 + qnk )
,

where (−1)kµk(n) is the difference between the number of partitions of n into even number parts and odd number parts
that have exactly k distinct values for the parts.

In 1999, Andrews [1] found that Nk(q) satisfies the following identity

Nk(q) =
1

(q; q)∞

∞∑
n=0

(−1)n−k

(n
k

)
q(

n+1
2 )

(q; q)n
, |q| < 1, (1)

where

(a; q)n = (1 − a)(1 − aq)(1 − aq2) . . . (1 − aqn−1)
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is the q-shifted factorial, with (a; q)0 = 1. Recently, Merca [21] proved a similar result forMk(q), i.e.,

Mk(q) =
1

(−q; q)∞

∞∑
n=0

(n
k

)
q(

n+1
2 )

(q; q)n
, (2)

considering the following truncated forms of Nk(q) and Mk(q).

Theorem 1. Let k and n be positive integers such that k ⩽ n. For |q| < 1,∑
1⩽n1<n2<···<nk⩽n

qn1+n2+···+nk

(1 ± qn1 )(1 ± qn2 ) · · · (1 ± qnk )
=

1
(∓q; q)n

n∑
j=k

(±1)j−kq(
j+1
2 )
(
j
k

)[
n
j

]
,

where [
n
k

]
=

⎧⎨⎩
(q; q)n

(q; q)k(q; q)n−k
, if k ∈ {0, 1, . . . , n},

0, otherwise

is the q-binomial coefficient.

As corollaries of this result, some relations involving vk(n), µk(n) and the number of partitions of n into exactly k distinct
partswere deduced by q-seriesmanipulation [21].We remark that the truncated theta serieswere recently studied in several
papers by Andrews and Merca [2,3], Chan, Ho and Mao [7] Guo and Zeng [11], He, Ji and Zang [12], Kolitsch [13] Mao [20],
and Yee [24]. Very recently, Merca [22] has been provided two recurrence relations for computing the numbers vk(n) and
µk(n) that do not involve other partition functions.

In this paper, motivated by these results, we shall provide new relations that involve the functions vk(n) and µk(n). To
this end, we consider the well-known Lambert series

∞∑
n=1

an
qn

1 − qn

and introduce the following factorizations for the special case an = mn, with m a real or complex number.

Theorem 2. Let m be a real or complex number. For |q| < 1,
∞∑
n=1

mn−1 qn

1 − qn
=

(q; q)∞
(mq; q)∞

∞∑
n=1

(
n∑

k=1

(1 − m)k−1kvk(n)

)
qn,

with the convention 00
= 1 in the case m ∈ {0, 1}.

Theorem 3. Let m be a real or complex number. For |q| < 1,
∞∑
n=1

mn−1 qn

1 − qn
=

(−q; q)∞
(mq; q)∞

∞∑
n=1

(
n∑

k=1

(−1 − m)k−1kµk(n)

)
qn,

with the convention 00
= 1 in the case m ∈ {−1, 0}.

The general linear group of degree n over any field F is the set of n × n invertible matrices with entries from F together
with the matrix multiplication as the group operation. Typical notation is GLn(F ) or GL(n, F ), or simply GL(n) if the field
is understood. If F is a finite field with m elements, then we write GL(n,m) instead of GLn(F ) or GL(n, F ). The numbers of
conjugacy classes in some finite classical groups were investigated in 1981 by Macdonald [17]. For a positive integer m, we
denoted by cn(m) the number of conjugacy classes in the finite group GL(n,m). Due to Feit and Fain [10], the generating
function for cn(m) is given by

∞∑
n=0

cn(m)qn =
(q; q)∞
(mq; q)∞

.

For m = 1, we have cn(1) = δ0,n, where δi,j is the Kronecker delta. By Theorem 2, we deduce that the number of conjugacy
classes in GL(n,m) and the number of partitions of n into parts of k different magnitudes are related by the following
convolution.

Corollary 1.1. Let m and n be positive integers. Then∑
d|n

md−1
=

n∑
j=1

j∑
k=1

(1 − m)k−1kvk(j)cn−j(m).
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A similar convolution for the number of conjugacy classes in GL(n,m) and µk(n) can be deduced from Theorem 3.

Corollary 1.2. Let m and n be positive integers. Then
⌈
√
n⌉−1∑

j=1−⌈
√
n⌉

(−1)j
∑
d|n−j2

md−1
=

n∑
j=1

j∑
k=1

(−1 − m)k−1kµk(j)cn−j(m).

In multiplicative number theory, the divisor function τ (n) is defined as the number of divisors of n, unity and n itself
included, i.e.,

τ (n) =

∑
d|n

1.

We use the convention that τ (n) = 0 for n ⩽ 0. We denote by τo(n) the number of odd divisors of n and by τe(n) the number
of even divisors of n. The identities τ (n) = v1(n) and τo(n) − τe(n) = µ1(n) are trivial. The case m = 1 of Corollary 1.2
provides a connection between the functions µk(n) and τ (n).

Corollary 1.3. Let n be a positive integer. Then
⌈
√
n⌉−1∑

j=1−⌈
√
n⌉

(−1)jτ (n − j2) =

n∑
k=1

(−2)k−1kµk(n).

A new expansion for τo(n) − τe(n) in terms of vk(n) can be easily obtained from Theorem 2 replacingm by −1.

Corollary 1.4. Let n be a positive integer. Then

τo(n) − τe(n) =

⌈
√
n⌉−1∑

j=1−⌈
√
n⌉

(−1)j
n−j2∑
k=1

2k−1kvk(n − j2).

On the other hand, Corollaries 1.3 and 1.4 are special cases of the following consequence of Theorems 2 and 3.

Corollary 1.5. Let m be a real or complex number. For n > 0,

n∑
k=1

(−1 − m)k−1kµk(n) =

⌈
√
n⌉−1∑

j=1−⌈
√
n⌉

(−1)j
n−j2∑
k=1

(1 − m)k−1kvk(n − j2), (3)

with the convention 00
= 1 in the case m ∈ {−1, 1}.

Equating coefficients of mp on each side of this relation gives the following relationship between the function vk(n) and
µk(n).

Corollary 1.6. Let p be a positive integer. For n > 0,

n∑
k=p

(−1)k−p
(
k
p

)
µk(n) =

⌈
√
n⌉−1∑

j=1−⌈
√
n⌉

n−j2∑
k=p

(−1)j
(
k
p

)
vk(n − j2).

As far as we know, the general identities provided by Theorems 2 and 3 are new. A lot of identities involving vk(n)
and µk(n) can be derived as consequences of these theorems. Some of them are presented in this paper. Combinatorial
interpretations for

n∑
k=1

kvk(n) and
n∑

k=1

(−1)n−kkµk(n)

are introduced in this context (see Corollaries 5.1 and 6.1).

2. Proofs of Theorems 2 and 3

Being given a set of variables {x1, x2, . . . , xn}, recall [18] that the kth elementary symmetric function ek(x1, x2, . . . , xn) is
given by

ek(x1, x2, . . . , xn) =

∑
1⩽i1<i2<···<ik⩽n

xi1xi2 · · · xik

for k = 1, 2, . . . , n. We set e0(x1, x2, . . . , xn) = 1 by convention. For k < 0 or k > n, we set ek(x1, x2, . . . , xn) = 0.
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The elementary symmetric functions are characterized by the following identity of formal power series in t:

E(t) =

n∑
k=0

ek(x1, . . . , xn)tk =

n∏
k=1

(1 + xkt).

For k = 1, 2, . . . , n, we consider that 1 + xkt ̸= 0. On the one hand, we have

d
dt

ln(E(t)) =

n∑
k=1

d
dt

ln(1 + xkt) =

n∑
k=1

xk
1 + xkt

. (4)

On the other hand, we can write

d
dt

ln(E(t)) =

(
n∏

k=1

1
1 + xkt

)(
n∑

k=1

kek(x1, . . . , xn)tk−1

)
. (5)

Thus, by (4) and (5), we derive
n∑

k=1

xk
1 + xkt

=

(
n∏

k=1

1
1 + xkt

)(
n∑

k=1

kek(x1, . . . , xn)tk−1

)
,

where x1, x2, . . . , xn and t are independent variables such that 1 + xkt ̸= 0 for k = 1, 2, . . . , n.
By the last relation, with xk replaced by qk

1∓qk
and t replaced by ±1 − m, we obtain the identity

n∑
k=1

qk

1 − mqk
=

(±q; q)n
(mq; q)n

n∑
k=1

(±1 − m)k−1kek

(
q

1 ∓ q
, . . . ,

qn

1 ∓ qn

)
. (6)

Taking into account that Nk(q) and Mk(q) are specializations of elementary symmetric functions, i.e.,
∞∑
n=0

vk(n)qn = ek

(
q

1 − q
,

q2

1 − q2
,

q3

1 − q3
, . . .

)
and

∞∑
n=0

µk(n)qn = ek

(
q

1 + q
,

q2

1 + q2
,

q3

1 + q3
, . . .

)
.

Theorems 2 and 3 are the limiting case n → ∞ of the relation (6). In addition, we have invoked the well-known identity
∞∑
n=1

mn qn

1 − qn
=

∞∑
n=1

mqn

1 − mqn
.

3. Proofs of Corollaries 1.1, 1.2 and 1.5

In general, for an (n = 1, 2, . . .) real or complex numbers we have

∞∑
n=1

an
qn

1 − qn
=

∞∑
n=1

⎛⎝∑
d|n

an

⎞⎠ qn, |q| < 1.

So Theorem 2 can be written as
∞∑
n=1

⎛⎝∑
d|n

mn−1

⎞⎠ qn =

(
∞∑
n=0

cn(m)qn
)(

∞∑
n=1

(
n∑

k=1

(1 − m)k−1kvk(n)

)
qn
)

.

Using the well-known Cauchy products of two power series(
∞∑
n=0

xnqn
)(

∞∑
n=0

ynqn
)

=

∞∑
n=0

(
n∑

k=0

xkyn−k

)
qn,

the proof of Corollary 1.1 follows easily.
By Theorem 3, we derived the identity

(q; q)∞
(−q; q)∞

∞∑
n=1

mn−1 qn

1 − qn
=

(q; q)∞
(mq; q)∞

∞∑
n=1

(
n∑

k=1

(−1 − m)k−1kµk(n)

)
qn.
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From this identity, considering the relation
∞∑

n=−∞

qn
2

=
(q; q)∞
(−q; q)∞

, (7)

we obtain(
∞∑

n=−∞

qn
2

)⎛⎝ ∞∑
n=1

⎛⎝∑
d|n

mn−1

⎞⎠ qn

⎞⎠ =

(
∞∑
n=0

cn(m)qn
)(

∞∑
n=1

(
n∑

k=1

(−1 − m)k−1kµk(n)

)
qn
)

.

Equating coefficients of qn on each side of this relation, the proof of Corollary 1.2 follows easily.
By Theorems 2 and 3, we obtain the identity

(q; q)∞
(mq; q)∞

∞∑
n=1

(
n∑

k=1

(1 − m)k−1kvk(n)

)
qn =

(−q; q)∞
(mq; q)∞

∞∑
n=1

(
n∑

k=1

(−1 − m)k−1kµk(n)

)
qn

or

(q; q)∞
(−q; q)∞

∞∑
n=1

(
n∑

k=1

(1 − m)k−1kvk(n)

)
qn =

∞∑
n=1

(
n∑

k=1

(−1 − m)k−1kµk(n)

)
qn.

Taking into account (7), the proof of Corollary 1.5 follows easily applying again the Cauchy multiplication of two power
series.

4. Connections with overpartitions

In 2003 Corteel and Lovejoy introduced a new and exciting component of the theory of partitions which are called
overpartitions [4–6,8,9,14–16]. An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in
which the first occurrence of a number may be overlined. For example, the 8 overpartitions of 3 are

3, 3̄, 2 + 1, 2̄ + 1, 2 + 1̄, 2̄ + 1̄, 1 + 1 + 1 and 1̄ + 1 + 1.

The number of overpartitions of n is usually denoted by p̄(n). Since the overlined parts form a partition into distinct parts
and the non-overlined parts form an ordinary partition, we have the generating function

∞∑
n=0

p̄(n)qn =
(−q, q)∞
(q; q)∞

.

Some connections between overpartitions and partitions into parts of kmagnitudes are present in this section.

Corollary 4.1. For n > 0,
n∑

k=1

2k−1kvk(n) =

n∑
k=1

µ1(k)p̄(n − k).

Proof. The casem = −1 of Theorem 2 can be written as

(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n−1 qn

1 − qn
=

∞∑
n=1

(
n∑

k=1

2k−1kvk(n)

)
qn

or (
∞∑
n=0

p̄(n)qn
)(

∞∑
n=1

(τo(n) − τe(n))qn
)

=

∞∑
n=1

(
n∑

k=1

2k−1kvk(n)

)
qn.

Equating coefficients of qn on each side of this relation gives the result. □

Corollary 4.2. For n > 0,

τ (n) =

n∑
j=1

j∑
k=1

(−2)k−1kµk(j)p̄(n − j).
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Proof. We take into account the case m = 1 of Theorem 2, i.e.,
∞∑
n=1

τ (n)qn =

(
∞∑
n=0

p̄(n)qn
)(

∞∑
n=1

(
n∑

k=1

(−2)k−1kµk(n)

)
qn
)

. □

Corollaries 4.1 and 4.2 can be considered as specializations of the following result.

Corollary 4.3. Let m be a real or complex number. For n > 0,
n∑

k=1

(1 − m)k−1kvk(n) =

n∑
j=1

j∑
k=1

(−1 − m)k−1kµk(j)p̄(n − j). (8)

Proof. By Theorems 2 and 3, we deduce the following relation
∞∑
n=1

(
n∑

k=1

(1 − m)k−1kvk(n)

)
qn =

(−q; q)∞
(q; q)∞

∞∑
n=1

(
n∑

k=1

(−1 − m)k−1kµk(n)

)
qn,

that can be written as
∞∑
n=1

(
n∑

k=1

(1 − m)k−1kvk(n)

)
qn =

(
∞∑
n=0

p̄(n)qn
)(

∞∑
n=1

(
n∑

k=1

(−1 − m)k−1kµk(n)

)
qn
)

.

Considering the Cauchy product of two power series, the proof follows easily. □

A new relationship between the partition functions vk(n) and µk(n) is given by the following result.

Corollary 4.4. Let p be a positive integer. For n > 0,
n∑

k=p

(
k
p

)
vk(n) =

n∑
j=1

j∑
k=p

(−1)k−p
(
k
p

)
µk(j)p̄(n − j).

Proof. Equating coefficients ofmp on each side of the relation (8) we obtain
n∑

k=1

(−1)p
(
k − 1
p

)
kvk(n) =

n∑
j=1

j∑
k=1

(−1)k−1
(
k − 1
p

)
kµk(j)p̄(n − j).

Multiplying the two members of this identity by (−1)p
p+1 , the proof follows easily. □

5. On the number of 1’s in all partitions of n

We denote by Sn(1) the number of 1’s in all partitions of n. For example, the five partitions of 4 are

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. (9)

Thus

S4(1) = 0 + 1 + 0 + 2 + 4 = 7.

Due to Riordan [23], the number Sn(1) can be expressed in terms of the partition function p(n), i.e.,

Sn(1) =

n−1∑
k=0

p(k). (10)

A proof of this relation based on Fine’s identity [23] is given in Riordan’s book [23].
Theorem 2 allows us to express Sn(1) in terms of the number of partition of n into parts of k different magnitudes.

Surprisingly, this relation was not observed for many years.

Corollary 5.1. Let n be a positive integer. Then

Sn(1) =

n∑
k=1

kvk(n).
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Proof. The casem = 0 of Theorem 2 can be written as

q
1 − q

·
1

(q; q)∞
=

∞∑
n=1

(
n∑

k=1

kvk(n)

)
qn.

Considering the generating function of p(n), i.e.,
∞∑
n=0

p(n)qn =
1

(q; q)∞
,

the proof follows easily. □

Example. By (9), we see that v1(4) = 3 and v2(4) = 2. S4(1) equals 7 because

v1(4) + 2v2(4) = 7.

As a consequence of Corollary 4.4, we obtain the following identity.

Corollary 5.2. Let n be a positive integer. Then

Sn(1) =

n∑
j=1

j∑
k=1

(−1)k−1kµk(j)p̄(n − j).

The kth generalized pentagonal number is denoted in this paper by Gk, i.e.,

Gk =
1
2

⌈
k
2

⌉⌈
3k + 1

2

⌉
.

A new recurrence relation for vk(n) involving the generalized pentagonal numbers is given by the following corollary.

Corollary 5.3. Let n be a positive integer. Then

∞∑
j=0

(−1)⌈j/2⌉
n−Gj∑
k=1

kvk(n − Gj) = 1.

Proof. Considering the casem = 0 of Theorem 2, namely

q
1 − q

= (q; q)∞
∞∑
n=1

(
n∑

k=1

kvk(n)

)
qn,

and Euler’s pentagonal number theorem
∞∑
n=0

(−1)⌈n/2⌉qGn = (q; q)∞,

we obtain the relation
∞∑
n=1

qn =

(
∞∑
n=0

(−1)⌈n/2⌉qGn
)(

∞∑
n=1

(
n∑

k=1

kvk(n)

)
qn
)

.

Equating coefficients of qn on each side of this identity gives the result. □

Proof. By (10) and Euler’s pentagonal number recurrence for the partitions function p(n),
∞∑
n=0

(−1)⌈j/2⌉p(n − Gj) = δ0,n,

we deduce that
∞∑
j=0

(−1)⌈j/2⌉Sn−Gj (1) = 1,

with Sn(1) = 0 for n ⩽ 0. Then considering Corollary 5.1, the proof is finished. □



2230 M. Merca / Discrete Mathematics 340 (2017) 2223–2233

6. Connections with partitions into distinct odd parts

In this section, we denote by qodd(n) the number of partitions of n into distinct odd parts. For example, qodd(16) equals 5
because the five partitions in question are

15 + 1 = 13 + 3 = 11 + 5 = 9 + 7 = 7 + 5 + 3 + 1.

On the other hand,we denote byQn(1) the number of partitions of n into distinct odd partswith the small part 1. For example,
Q16(1) equals 2 because the two partitions in question are

15 + 1 = 7 + 5 + 3 + 1.

It is known that the generating functions for the numbers qodd(n) and Qn(1) are given by
∞∑
n=0

qodd(n)qn = (−q; q2)∞ =
1

(q; −q)∞

and
∞∑
n=0

Qn(1)qn = q(−q3; q2)∞ =
q

1 + q
· (−q, q2)∞,

respectively. It is clear that the number Qn(1) can be expressed in terms of qodd(n), namely

Qn(1) =

n−1∑
k=0

(−1)n−1−kqodd(k).

Theorem 3 provides a new way to express Qn(1) as a sum involving the partition function µk(n).

Corollary 6.1. Let n be a positive integer. Then

Qn(1) =

n∑
k=1

(−1)n−kkµk(n).

Proof. By Theorem 3, withm replaced by 0, we obtain the relation

q
1 − q

·
1

(−q; q)∞
=

∞∑
n=1

(
n∑

k=1

(−1)k−1kµk(n)

)
qn,

that can be written as
∞∑
n=1

(
n−1∑
k=0

(−1)kqodd(k)

)
qn =

∞∑
n=1

(
n∑

k=1

(−1)k−1kµk(n)

)
qn.

The proof follows easily. □

The number of partitions of n into distinct parts is usually denoted by q(n). A new connection between q(n) and the
function µk(n) is given by the following identity.

Corollary 6.2. Let n be a positive integer. Then
n∑

j=0

j∑
k=1

(−1)k−1kµk(j)q(n − j) = 1.

Proof. We consider the case m = 0 of Theorem 3

q
1 − q

= (−q; q)∞
∞∑
n=1

(
n∑

k=1

(−1)k−1kµk(n)

)
qn

and obtain the relation
∞∑
n=1

qn =

(
∞∑
n=0

q(n)qn
)(

∞∑
n=1

(
n∑

k=1

(−1)k−1kµk(n)

)
qn
)

.

Equating coefficients of qn on each side of this identity gives the result. □
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In terms of Qn(1), Corollary 6.2 can be written as follows.

Corollary 6.3. Let n be a positive integer. Then
n∑

k=1

(−1)k−1Qk(1)q(n − k) = 1.

Finally, we remark that Qn(1) can be expressed in terms of Sn(1) and vice-versa.

Corollary 6.4. Let n be a positive integer. Then

Qn(1) +

∞∑
k=−∞

(−1)n−kSn−k2 (1) = 0,

with Sn(1) = 0 for n ⩽ 0.

Proof. We consider Corollaries 5.1 and 6.1, and the casem = 0 of Corollary 1.5. □

Corollary 6.5. Let n be a positive integer. Then

Sn(1) =

n∑
j=1

(−1)j−1Qj(1)p̄(n − j).

Proof. We consider Corollaries 5.2 and 6.1. □

7. Further identities involving τ(n)

Few identities for the divisor function τ (n) have already been presented in some of the previous sections as corollaries of
Theorems 2 and 3. In this section, we consider another special case of these theorems, namelym = q, to discover and prove
new relationships between divisors and partitions into parts of k different magnitudes.

Corollary 7.1. Let n be a positive integer. Then
n∑

k=1

τ (k) = n +

⌊n/2⌋∑
j=1

n−j∑
k=j

(−1)j−1j
(
k
j

)
vk(n − j).

Proof. The casem = q of Theorem 2 can be written as

1
1 − q

∞∑
n=1

q2n−1

1 − qn
=

∞∑
n=1

(
n∑

k=1

(1 − q)k−1kvk(n)

)
qn.

It is not difficult to prove that the coefficient of qn in the right hand side of this identity is given by
⌈n/2⌉∑
j=1

n+1−j∑
k=j

(−1)j−1j
(
k
j

)
vk(n + 1 − j).

On the other hand, it is well-known that the generating function for the number of proper divisors of n is
∞∑
n=1

(τ (n) − 1)qn =

∞∑
n=1

q2n

1 − qn
.

Taking into account that the generating function of

a0 + a1 + · · · + an

is given by

1
1 − q

∞∑
n=0

anqn,

the proof follows easily. □
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We denote by Tn(1) the number of partitions of n into exactly 2 types of parts, where one part is 1. For example, T5(1)
equals 4 because the partitions in question are

4 + 1 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1.

Moreover, it is an easy exercise to prove that

Tn+1(1) = −n +

n∑
k=1

τ (k).

In this context, Corollary 7.1 allows us to express the number Tn+1(1) in terms of the function vk(n).

Corollary 7.2. Let n be a positive integer. Then

Tn+1(1) =

⌊n/2⌋∑
j=1

n−j∑
k=j

(−1)j−1j
(
k
j

)
vk(n − j).

The following result provides a relationship between Tn(1) and µk(n).

Corollary 7.3. Let n be a positive integer. Then

⌈
√
n+1⌉−1∑

1−⌈
√
n+1⌉

(−1)jTn+1−j2 (1) =

⌊n/2⌋∑
j=1

n−j∑
k=j

(−1)k−1j
(
k
j

)
µk(n − j).

Proof. We consider the casem = q of Theorem 3
∞∑
n=1

q2n−1

1 − qn
=

(−q; q)∞
(q2; q)∞

∞∑
n=1

(
n∑

k=1

(−1 − q)k−1kµk(n)

)
qn,

that can be rewritten as

(q; q)∞
(−q; q)∞

·
1

1 − q

∞∑
n=1

q2n

1 − qn
=

∞∑
n=1

(
n∑

k=1

(−1 − q)k−1kµk(n)

)
qn+1

or (
∞∑

n=−∞

(−1)nqn
2

)(
∞∑
n=0

Tn+1(1)qn
)

=

∞∑
n=1

(
n∑

k=1

(−1 − q)k−1kµk(n)

)
qn+1.

It is not difficult to prove that the coefficient of qn in the right hand side of the last identity is given by
⌊n/2⌋∑
j=1

n−j∑
k=j

(−1)k−1j
(
k
j

)
µk(n − j).

The proof follows easily equating the coefficient of qn on each side of the last identity. □

8. Concluding remarks

A new technique for discovering and proving combinatorial identities has been introduced in the paper by Theorems 2
and 3. As consequences of these results, relationships between conjugacy classes in the general linear group GL(n) and the
partitions of n into parts of k different magnitudes have been derived as finite discrete convolutions. Also new identities
involving divisors, overpartitions and other combinatorial objects have been presented as corollaries of these theorems.
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