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Abstract
An exactly solvable model is constructed by considering an energy-dependent harmonic
oscillator potential in the β part of the Bohr Hamiltonian separated adiabatically from the
γ-angular degrees of freedom. The energy dependence is linear and introduced in the string
constant. The fundamental implications of the energy dependence in quantum theory are
thoroughly discussed in connection with the slope parameter. The numerical applications of the
model are found to match the collective features for extended chains of even–even Os and Pt
isotopes, which exhibit a smooth evolution in the slope of the energy dependence.

Keywords: Bohr Hamiltonian, energy-dependent potential, collective models, Os nuclei, Pt
nuclei

(Some figures may appear in colour only in the online journal)

1. Introduction

Exactly solvable models, in particular Schrödinger equations
whose solutions can be determined algebraically, play a very
important role in quantum physics. Exact solvability is
directly related to the symmetry properties of the modeled
system. This in turn allows a group theoretical description of
the problem in terms of associated quantum numbers. The
number of exactly solvable potentials is unfortunately scarce,
including the most well-known textbook examples, such as
Coulomb, Kratzer, harmonic oscillator, Davidson, Morse,
Pöschl–Teller, Scarf, Rosen–Morse, Eckart, Nathanzon and a
few others. Many of these potentials were successfully used
in various instances of the Bohr–Mottelson model [1, 2] to
describe the collective states of even–even atomic nuclei
within simple parametric solutions [3, 4]. The diversity of the
nuclear collective behavior, however, limits the success of
these solutions to particular regions of the nuclide chart, or
even only to few nuclei, with many ‘exotic’ collective exci-
tations unattainable. Nevertheless, some collective models
serve as reference landmarks due to their embedded dyna-
mical symmetries [5], thus giving some perspective for the
uncharted nuclear collective motion. There are ways to extend
the utility of the exactly solvable models. One is their

extension to quasi-exact solvability [6], applied, for example,
in the case of the sextic potential [7]. Another avenue which
will be explored in this paper refers to the energy-dependent
variations of the exactly solvable potentials [8–10]. The
differential Schrödinger equation with an energy-dependent
(non-local) potential is solved similarly to the case of the
original local potential, thus retaining at least a part of its
analytic structure. The eigenvalues, however, are not deter-
mined from a linear correspondence, as in the usual case, but
by solving an algebraic equation of higher order [10–15]. This
theory was first applied for the Bohr–Mottelson Hamiltonian
in connection to the spherical vibrator model where the har-
monic potential was made linearly energy-dependent through
the string constant [16]. Other applications followed [17, 18],
opening up a new class of collective solutions with com-
pletely new spectral attributes. In this paper we want to
reiterate the formalism of [16] for the axially symmetric
nuclei whose Bohr Hamiltonian can be approximately
decoupled into two parts corresponding to the shape variables
β and γ [19]. Such an adiabatic decoupling provides a
theoretical spectrum classified in well-defined rotational
bands. This is achieved in the next section where the analy-
tical formulas of the theoretical formalism are deduced. Due
to the distinctive structure of the five-dimensional shape
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phase space associated with the Bohr Hamiltonian, the
implications coming from the energy dependence of the
potential will be necessarily revised in section 3. As most of
the medium mass nuclei exhibiting collective features are
axially deformed, such a description is expected to have a
larger applicability than the previous γ-unstable solutions
[16, 17]. This is confirmed by the model’s numerical appli-
cations on an extended series of Os and Pt isotopes presented
in section 4. The theoretical fits also revealed some regula-
rities in the energy dependence throughout the isotopic chains
which differ between Os and Pt nuclei. This result, as well as
other conclusions regarding the present study, are recounted
in the final section.

2. Theoretical framework

The general Bohr Hamiltonian reads [1, 2]:
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whereby =( )Q k 1, 2, 3k are denoted the operators of the total
angular momentum projections on the axes of the intrinsic
reference frame, while B is the mass parameter. In the case of a
very sharp γ potential centered around g = 0, the rotational
term from (1) can be very well approximated [19] by
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where Q is the total angular momentum vector operator.
Seeking solutions of the factorized form b gY W =( ), ,

x b h g W( ) ( ) ( )DMK
L where DL

MK are Wigner functions of total
angular momentum L and its projections M and K on the
body-fixed and laboratory-fixed z-axis respectively, the total
Schrödinger equation can be resolved after averaging on the
Wigner states into β and γ parts [19]:
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Here b0 is a static ‘average’ of β which ensures an approxi-
mated adiabatic separation of the β and γ surface oscillations,
provided a similar separation is valid for the potential energy


b g b g= +( ) ( ) ( )V v v,B2

2 . This approximation was exten-
sively analysed in [20], and it was concluded that it is in
agreement with the full diagonalization results for most of the
transitional nuclei. In the context of this adiabatic separation,

the total energy of the system is expressed as  = +b




=g EB2
2 .

The γ equation is further approximated by a first order
expansion of the trigonometric functions around g = 0
[19, 20]. Considering the same approximation for the lowest
order γ potential g g= -( ) ( )v a 1 cos 3 , which obeys the
Bohr symmetry [23], one obtains a radial-like equation for a
two-dimensional harmonic oscillator
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The eigensystem for the γ variable is then easily solved and
the results are:
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where NnK is a normalization constant determined with the
integration measure g g∣ ∣dsin 3 .

Considering a harmonic oscillator potential for the β

equation (3) also, but with a coupling constant depending on
the energy associated only with the β degree of freedom

 b b=b b( ) ( )v k, 2, one obtains a similar exact solution:
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The corresponding energy eigenvalues are then extracted
from the following equation:
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When k is a constant, the model becomes fully scalable with
respect to it, thus leading to the X(5)-b2 solution [21] which is
parameter free for K = 0 states.

Due to the energy dependence of the β potential, the
scalar products involving β wave functions (9) are defined
with the modified integration measure [10]:
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This is one of the essential conditions for the corresponding
quantum theory to be intrinsically consistent [10], ensuring
that the wave functions (9) satisfy the continuity equation. We
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will further use the simplest energy dependence, i.e. the linear
one

 = +b b
b b

( ) ( )k a1 . 13Ln Ln

In the general case of an arbitrary energy dependence, the
eigenfunctions associated with each energy level correspond
to different Hamiltonian operators acting in distinct Hilbert
spaces due to the variation of the potential involved. The fact
that the resulting wave-functions do not belong to the same
eigenspace leads to the violation of the completeness relation.
By amending this relation with the same correction factor as
in the case of the scalar product, the completeness condition is
exactly satisfied only if the correction factor is state inde-
pendent [10], and this happens only for the linear energy
dependence. Other energy dependencies have deviations from
the completeness relation, a fact which makes the calculation
of expectation values unreliable. Therefore, in the present
study, all scalar products involving functions of β must be
amended with the same factor b-( )a1 2 . This is also the case
for the norm bNLn .

Plugging (13) into (11), we obtain a quadratic equation
for the β energy, where the physical solution is
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Finally, the total excitation energy of the system is given
as a sum of the γ (6) and β (14) eigenvalues
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while the total wave-function, including the normalized and
symmetrized angular part, is [19, 22, 24]:
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Electromagnetic properties of collective states are
dominated by the ( )B E2 transition probabilities. The quad-
rupole transition operator used for the calculation of the E2
transition probabilities is
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where t is a scaling factor. Exploiting the factorized character
of the total wave function (16) and the Wigner–Eckart theo-
rem, one can write the transition probability in a similar
manner as [24, 25]:

p

p

 ¢ ¢ ¢ ¢

=
áY Y ñ

+

=

b g b g

¢ ¢ ¢ ¢

¢- ¢
¢

¢ ¢ ¢ ¢

b g b g

b

b

g

g

( )
∣ ∣∣ ( )∣∣ ∣

( ) ( )

B E LKn n L K n n

T E

L
t

C B G

2,

5

16

2

2 1
5

16
, 18

L K n n LKn n

KK KK
L L

L n
Ln

K n
Kn

2

2
2 2

where C is a Clebsch–Gordan coefficient, while factors B and
G are integrals over β and γ variables, respectively. In our
model γ is very small such that g »cos 1 and g »sin 0 [24],
consequently »G 1 for D =K 0 transitions which are of
more interest. One must also remember here the use of the
modified integration measure (12) for the β integral.

3. Model characteristics

The energy dependence of the potential has important effects
on the quantum structure of the usual state independent pro-
blem. The mentioned deformation of the integration metric
defining the scalar products of the β shape variable also
induces a modification of the associated density of the
probability distribution,

r b b b b= -
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2 2 4

This quantity must be positive definite in order to describe a
coherent quantum model. This condition is exactly realized
for the whole domain of the β values only when a 0. Even
so, all norms and relevant averages of the β shape variable are
positive for any a L, and bn . Indeed, by taking into con-
sideration expression (14) of the β energy, it can be easily
verified, for example, that the norm
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is positive for " bL n, when >a 0. Compared to the a = 0
situation, the redefined norm for the ground state has an
increasing value with the slope parameter. Regardless of the a
value, the norm reaches very low values at the same high
angular momentum L for a fixed bn . A more drastic change
happens in its evolution with the β vibration quantum num-
ber. For L = 0, the norm is an asymptotically decreasing
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function of bn when a = 0, but at some value of >a 0 it starts
to increase with bn . This transition happens at a relatively low
value of a, around 0.2, where it also exhibits a local minimum
for >bn 0.

The notion of negative probability dates from the
foundation of quantum mechanics, when Dirac [26] and
Heisenberg [27] were first confronted with the case of
probability distributions with negative values. They argued
that negative probabilities are indispensable when dealing
with quantum corrections. The most familiar example in this
sense is the Wigner quasi-probability function [28] which
associates a phase space probability distribution with the
solutions of the Schrödinger equation. The occurrence of
negative probability in quantum theory stems from the fact
that the quantum hypotheses and initial conditions are not
directly transferable to the real physical world. Feynman’s
conclusion comes to mind here [29]: ‘...that a situation for
which a negative probability is calculated is impossible, not
in the sense that the chance for it happening is zero, but
rather in the sense that the assumed conditions of preparation
or verification are experimentally unattainable.’ Although the
interpretation of negative probability is still a controversial
matter, it is nevertheless regarded as a solid mathematical
concept [30] which is allowed in quantum theory when
dealing with intermediate quantities, i.e. not finally observed
[29]. This is also the situation of the probability distribution
(19), which is not directly observed because one cannot
perform identical measurements to determine the frequency of
the appearance for a certain β deformation. It provides,
however, physically meaning observables such as expectation
values.

For the present case, however, the negative contribution to
the total probability distribution is easily negligible for any
>a 0. Indeed, the maximum negative contribution of ρ amounts

to 0.71%, 0.40% and 0.24% for =a 0.45, 0.39 and 0.25 from
the norms corresponding to =b( ) ( ) ( ) ( )L n, 0, 0 , 2, 0 , 0, 1
states. The percentage decreases even more with an increase
in a and any of the quantum numbers L or n, tending to zero
in their asymptotic limits [16]. From a phenomenological point
of view, the >a 0 and <a 0 model realizations correspond to a
stiffening and, respectively, a softening of the β vibrations.

Another peculiar feature of the models involving poten-
tials with coupling constants linear in energy is the saturation
of the relative energy level spacings in the large value limit of
a [16, 17]. The same saturation of the normalized K = 0
energy spectrum of the present model can be observed in
figure 1. It occurs as a consequence of a becoming a simple
scaling factor for the β energy when it reaches a sufficiently
high value,
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One can see from figure 1 that the scaled spectrum can be
achieved already at quite moderate values of a for the lowest
energy levels. The energy level spectrum of the ground and β

bands in the asymptotic limit of a is visualized in figure 2. The
associated quadrupole transition rates, shown in the same figure,

are calculated numerically with equation (18) by gradually
increasing the slope parameter a until a convergence is achieved
[16]. Among specific signatures of this asymptotic regime, one
can mention the extremely strong b

+ +0 2g transition and the
decreasing trend of the intraband transitions starting from

+ +4 2 . As can be seen from figure 3, this last aspect is very
different from the unperturbed case of the X(5)-b2 model,
whose ground band to ground band transition probabilities
increase linearly. This means that the transition probabilities are
more sensible to the variation of a than the energy levels, and
that the present model can cover a very wide range of evolution
patterns for the transition rates.

The region of negative values for a presents little prac-
tical importance. The collective excitations are usually asso-
ciated with the ratio between the excitation energies of the
first two excited states >R 24 2 . Although the model
recovers the limiting value =R 24 2 for = -a 0.78, the
associated level scheme has monotonically decreasing con-
secutive level spacings which end in an energy threshold.
Such a situation is found, for example, in the ground band of
200–218Po isotopes [31–33], but is ascribed to a close interplay
between single-particle and collective degrees of freedom. To
date, pure collective behavior with such a spectrum has not
been indicated in any nuclei. Nevertheless, small negative
values of a can still ensure an expanding energy level
sequence up to high angular momentum states, a fact which
further extends the applicability of the proposed model for the
description of collective spectra.

From figure 1, one can also see that the ground band
energy level sequence of X(5) [19] is very closely reproduced
by the present model for ~a 0.23. The β band states are,

Figure 1. The low-lying excitation energy spectrum of the ground
band and the first β excited band ( =bn 1) normalized to the energy
of the first excited state from the ground band are given as a function
of the slope parameter a. The points of the intersection between X(5)
and the present model estimations of the ground band energy levels
are indicated by diamonds.
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however, lower in energy than in the X(5) model. Being based
on the a priori delocalization of the β deformation, X(5) has
an equilibrium value of β vibration smaller than in the ground
state. On the other hand, a confined β potential of the har-
monic type used in the X(5)-b2 solution leads to a very large
increase of the β vibrational equilibrium value. The present
approach allows a transition between such situations, i.e. from
an expansion to a contraction of the equilibrium β deforma-
tion within a vibrational regime relative to the ground state
deformation. This transition is graphically shown in figure 4
as a function of a. At a = 0.176, the average β deformation in
the ground state is equal to that calculated in the first excited
β state.

4. Numerical results

The search for experimental realizations of the model was
made by minimizing the deviation:
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Figure 2. Energy level scheme of the ground band and the first β
excited band corresponding to the asymptotic regime of the slope
parameter a associated with the energy-dependent X(5)-b2 model.
Energies are given in terms of the first excited state energy, while the
corresponding ( )B E2 transition probabilities are normalized to

 =+ +( )B E2, 2 0 100g g in order to lose the corresponding scaling
constants.

Figure 3. The evolution of the ( )B E2 transition probabilities within
the ground band normalized to + +( )B E2, 2 0g g as a function of
angular momentum for a = 0 (X(5)-b2) and  ¥a which enclose
the existence region of the model (gray area). The curve
corresponding to the X(5) results is also shown for reference.

Figure 4. The relative displacement of the average β deformation in
the =bn 1 state from the ground state value.
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N is the total number of the states considered for the fitting
procedure. Equation (22) involves excitation energies relative
to the ground state, that is the theoretical results are obtained
from equation (15) with a subtracted E0000 energy. The nor-
malization of these energies to the energy of the first excited
state eliminates the dependence on the scaling factor  B22 .
In this way, the energy spectrum of the ground and β bands
depends solely on a D, being employed only for the γ band
energies.

The best agreement with the experiment was found in an
extended series of Os and Pt isotopes. Among these nuclei,
174Os was previously indicated as a viable X(5)-b2 candidate
[34]. The results of the fits are given in table 1. The fitted
values of the slope parameter a do not exceed unity, with the
highest value a = 0.3032 reported for 190Os. Therefore, it
seems that the asymptotic version of the present model
(figure 1) does not have an experimental counterpart in this
region of the nuclide chart. There are also two negative a
values corresponding to the 194,196Pt nuclei. Although the
negative values are quite small and bring only a slight var-
iation to the X(5)-b2 results for the observables listed in
table 1, the effect is more significant for higher energy levels,
as can be seen from figure 1. The evolution of the slope
parameter as a function of the atomic mass number A in each
isotopic chain is very smooth and monotonic. There is,
however, a stark difference between the two isotopic series:
whereas in Os nuclei, a increases with A, for Pt isotopes it has
an opposite evolution. A similar reversed behavior was
obtained for Os and Pt nuclei with respect to γ-rigidity [39]. It
actually originates from the variation of the valence proton–
neutron interaction between neutron closed shells at N = 82
and N = 126 magic numbers. A good measure for this col-
lectivity characteristic is the product between the numbers of
valence protons and neutrons [40]. The smaller number of

valence nucleons (or holes) in the nuclei near the closed shells
allows a softening of the spherical shape of the core against
quadrupole vibrations, while a larger valence space facilitates
the development of more stable quadrupole deformations
[41]. The latter situation is obviously expected near the
midshells where the number of valence nucleons is maximal.
In Os and Pt isotopes, the relevant neutron midshell is at
N = 104 corresponding to 180Os and 182Pt. As was discussed
alongside the results of figure 4, an increased slope parameter
means a more stable deformation, hence the difference
between the evolution of the slope parameter in the two
isotopic chains. More precisely, the amount of valence prot-
on–neutron interactions in Os nuclei increases up to 180Os and
starts to abate afterwards. The latter trend is reflected in the
higher a value for 190Os with respect to 192Os and in the
general evolution of a for the Pt isotopic chain. Almost all Pt
nuclei are positioned above the N = 104 midshell, such that
their neutron valence spaces are composed from a decreasing
number of neutron holes.

Os and Pt isotopes are well known for their ambiguous
collective behavior. This fact has made them perfect candi-
dates for many and various collective solutions: γ-rigid
[7, 35–39], γ-soft [24, 42–49], or triaxial [7, 36, 37, 50–52].
Moreover, the same region also exhibits features of critical
point behavior for the shape phase transition between sphe-
rical and deformed nuclei [35–39, 45–47, 53]. This versatility
of Os and Pt isotopes is consistent with their central position
in the IBA symmetry triangle [54, 55]. Comparing the present
results to those of the aforementioned models, one can say
that, to date, our model provides the best agreement with
experimental energy spectra for all treated nuclei. This
statement is based on the comparison of the current descrip-
tion to models with the same or greater number of free

Table 1. Comparison of theoretical results with the experimental data for the R4 2 ratio and the excited band heads. The origin of
experimental data is given in the second column. The details of the fitting procedure are the values of the free parameters, the angular
momenta of the highest levels of the ground, β, and γ bands included in the fit, as well as the states with missing data denoted by barred
values, the total number of the fitted energy levels and the corresponding σ value.

Nucl. References R4 2 R4 2 R2 2 R2 2 R0 2 R0 2 a D Lg gL bL Nr. of σ

exp th exp th exp th states

172Os [56] 2.66 2.70 4.03 4.25 3.33 3.67 0.0416 2.045 22 6 8 20 0.79
174Os [57] 2.74 2.76 5.34 5.92 3.44 3.80 0.0967 3.580 32 5 6/2 22 0.36
176Os [58, 59] 2.93 2.83 6.39 6.99 4.45 3.95 0.1661 5.181 24 5 6 19 0.73
178Os [60] 3.01 2.85 6.54 7.57 4.93 4.00 0.1926 6.055 24 7/6 6 20 0.89
180Os [61] 3.09 2.92 6.59 7.52 5.57 4.15 0.2887 7.430 14 9/8 6 17 0.75
190Os [62] 2.82 2.93 2.38 3.19 4.65 4.17 0.3032 2.571 10 10/7, 9 2 13 0.24
192Os [63] 2.82 2.87 2.38 2.69 4.65 4.03 0.2133 1.632 12 10/9 2 15 0.27

180Pt [61] 2.68 2.80 4.42 5.44 3.12 3.89 0.1360 3.571 26 9/6, 8 6 22 0.56
182Pt [64] 2.71 2.78 4.31 5.21 3.23 3.84 0.1147 3.209 26 7 8 23 0.70
184Pt [65] 2.68 2.75 3.98 4.89 3.02 3.78 0.0895 2.780 28 7 6 23 0.52
186Pt [66] 2.56 2.73 3.17 4.10 2.46 3.74 0.0706 2.110 26 10 6 25 0.58
188Pt [67] 2.53 2.69 2.28 2.50 3.01 3.66 0.0387 0.938 12 8/5, 7 2 12 0.28
190Pt [62] 2.49 2.65 2.02 2.23 3.11 3.57 0.0042 0.700 10 6 2 11 0.18
192Pt [63] 2.48 2.66 1.94 2.20 3.78 3.59 0.0096 0.694 10 8 4 14 0.19
194Pt [68] 2.47 2.65 1.89 2.01 3.86 3.56 −0.0002 0.564 10 5 6 11 0.19
196Pt [69, 70] 2.47 2.64 1.94 2.07 3.19 3.55 −0.0049 0.595 10 8 4 13 0.26
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parameters. In the case of single parameter solutions, the
comparison is restricted only to the ground and β bands which
are also specified in the present approach by a single adjus-
table parameter.

For all considered nuclei, we calculated the absolute
values for few D =K 0 E2 transition probabilities by means
of equation (18). We chose to present the results in Weisskopf
units (W.u.) for ready use in experimental studies. To obtain
absolute values, we fixed the scaling constant t such that to
reproduce the experimental value of + +( )B E2, 2 0g g . The
model predictions for the ground band to ground band E2
transition rates given in table 2 are in agreement with
experimental data for most of the nuclei, especially for tran-
sitions involving lower angular momentum states. From all
the experimental data for the intraband transitions, only those
of 176Os seem to follow the steep increase predicted by the X
(5)-b2 model (see figure 3). On the other hand, for the
178,190,192Os nuclei exhibiting the highest values of the slope
parameter, the present model predicts the correct stagnation or
even decrease in ( )B E2 values as a function of angular

momentum. Although the present numerical applications of
the model on the energy spectra are limited to the highest
value of »a 0.3, for some nuclei, the decreasing exper-
imental transition probabilities with angular momentum in the
ground band might be better described by a much higher a
value. In this way, the gray area from figure 3 representing the
existence region of the theoretical model can be fully popu-
lated by experimental realizations. The last column of table 2
shows the results of the interband b

+ +( )B E2, 0 2g trans-
ition rate, which is the most experimentally accessible. The
theoretical predictions for this transition overestimate the
experimental values by up to two orders of magnitude. One
source for this discrepancy is the fact that one used, for this
interband transition, a scaling factor fixed from experimental
data on an intraband transition. On the other hand, despite
good fitting results for nuclei with a measured b

+ +0 2g

transition, the relative position of the experimental b
+0 energy

level is not very well reproduced. The energy fits, however,
reproduce a correct energy level distribution within the band.
Therefore, for more reliable predictions for interband

Table 2. Theoretical predictions (first row) for fewD =K 0 quadrupole transition probabilities are compared with available experimental data
(second row). The results are given in W.u. Prediction errors originate from the uncertainty of the experimental + +( )B E2, 2 0g g value
which is used to determine the scaling factor t.

Nucl. + +4 2g g + +6 4g g + +8 6g g + +10 8g g + +12 10g g b
+ +0 2g

References

172Os 200(12) 277(17) 351(21) 419(26) 482(29) 129(8)
[56] 173(17) 300(40) 380(110) 260(50) -

+280 45
105

174Os 266(12) 351(16) 421(19) 477(21) 520(23) 158(7)
[57, 71]
176Os 236(8) 296(10) 337(12) 362(13) 375(13) 138(5)
[72] 243(5) 305(11) -

+321 14
15

-
+441 63

88
-
+517 146

336

178Os 225(18) 278(22) 311(25) 328(26) 334(26) 134(11)
[53] 310(230) 340(120) 310(80)
180Os 221(23) 259(28) 274(29) 274(29) 266(28) 157(17)
[61] 192(25) 160(40) 63(13)
190Os 112(3) 130(4) 137(4) 136(4) 132(4) 83(2)
[62] 105(6) 113(10) 137(20) 61(16) 2.2(5)
192Os 100(1) 122(1) 134(2) 140(2) 141(2) 61(1)
[63] 75.6(20) -

+100 3
5 115(6) -

+105 26
10 0.57(12)

180Pt 256(25) 327(32) 381(37) 418(41) 442(43) 148(14)
[61, 73] 193(16) 198(39) 263(88)
182Pt 181(13) 248(17) 294(21) 328(23) 353(25) 112(8)
[64] 192(12) 292(20) 266(25) 280(40) 162(10)
184Pt 215(8) 286(11) 346(14) 395(16) 433(17) 129(5)
[65] 210(8) 226(12) 271(18) 310(40) 183(17)
186Pt 192(17) 259(23) 319(28) 370(33) 413(37) 118(11)
[74] 181(13) 278(23) 290(30) 291(25) 250(30)
188Pt 143(26) 198(36) 252(46) 302(55) 348(64) 92(17)
[67]
190Pt 99(5) 142(8) 187(10) 233(12) 278(15) 68(4)
[62]
192Pt 101(2) 144(3) 188(4) 233(5) 277(6) 68(1)
[63] 89(5) 70(30)
194Pt 88(1) 126(2) 166(3) 207(3) 250(4) 60(1)
[68] 85(5) 67(21) 50(14) 34(9) 0.63(14)
196Pt 72.4(4) 104(1) 138(1) 174(1) 210(1) 50.0(2)
[69] 60.0(9) -

+73 73
4

-
+78 78

10 2.8(15)
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transitions, one must normalize the results to another trans-
ition of the same kind or one connecting two β band states
which are yet to be measured. To support this point, one can
take as an example the 196Pt nucleus for which more
electromagnetic information is available regarding the β band.
In this case, the ratio between experimental b b

+ +2 0 and
b

+ +0 2g transition probabilities is 1.79(96), while the
corresponding theoretical value is 1.29.

5. Conclusions

The Bohr Hamiltonian for axially symmetric nuclei was
approximately separated into γ and β parts. The differential
equation of the β part includes the rotational contribution
from the angular momentum quantum number, while that
associated with the γ degree of freedom incorporates the
dependence on the angular momentum projection K on the
z-axis of the laboratory frame of reference. The γ equation is
treated in conformity with the small angle approximation
specific to axially symmetric solutions. In this way, the
contribution of the γ degree of freedom to the total energy is
constant, with an additional shift in the case of the γ band
energies. The potential for the rotation–vibration β equation is
considered to be of the harmonic oscillator type. The novel
ingredient of the present approach is the energy dependence
of the potential’s coupling constant, which is linear. This
modification has important consequences on the fundamental
quantum structure of the model which are discussed in
detail. The eigenvalue problem for the β part of the Bohr
Hamiltonian leads, in this case, to a quadratic equation for the
β energy. Apart from a scaling factor, the physical solution
depends only on the slope parameter. This means that the
ground and β band energies are fully described by a single
parameter, while for the γ band energy levels, an additional
parameter is needed to fix the band head energy. In its
asymptotic limit, the slope parameter acquires just a scaling
role, such that the associated β eigensystem becomes para-
meter independent. The quadrupole transition probabilities
are found to be more sensible to the variation of the slope
parameter than the energy levels. This is the result of the
cumulated energy dependence of the wave functions and the
additional a dependence of the integration measure for the β

variable scalar product.
The phenomenology associated with an energy-dependent

harmonic potential is understood as a stiffening of the nuclear
surface against axially-symmetric vibrations. This effect dimin-
ishes the displacement of the equilibrium deformation of the β

vibration from the ground state deformation. In the zero slope X
(5)-b2 model, the β vibrational average deformation is higher
than the ground state deformation. As the slope of energy
dependence increases, the β vibration equilibrium deformation
decreases, becoming at some point even smaller than the ground
state value.

The model’s numerical applications to many Os and Pt
isotopes, whose description in terms of collective solutions
has been problematic so far, were found to be in excellent
agreement with the experiment concerning the energy spectra

as well as quadrupole transition probabilities. The fitted
values of the slope parameter have a smooth growth as a
function of A in Os isotopes, not reaching, however, into the
asymptotic regime. In contrast, the Pt nuclei exhibit a
monotonic decrease in the slope of the energy dependence
when going to heavier nuclei. This distinctive feature of the
Os and Pt isotopic chains shows the importance of excited
energy levels in determining their correct collective evolution.
The unmatched agreement with the experimental data
strongly supports a clear axially-deformed shape for all con-
sidered nuclei. This is an encouraging result for future mean
field microscopic calculations on excited states. Otherwise,
based on the deduced ground state properties of these nuclei,
which point to the possible importance of dynamical triaxi-
ality [75–79], their extension to excited states will be hindered
by the subsequent restoring of the rotational symmetry [79].
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