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Abstract. Half-lives of proton emission for Z ≥ 51 nuclei are calculated within a simple analytical model
based on the WKB approximation for the barrier penetration probability which includes the centrifugal and
overlapping effects besides the electrostatic repulsion. The model has a single free parameter associated to a
Hulthen potential which emulates a Coulomb electrostatic interaction only at short distance. The agreement
with experimental data is very good for most of the considered nuclei. Theoretical predictions are made
for few cases with uncertain emitting state configuration or incomplete decay information. The model’s
assignment of the proton orbital momentum is in agreement with the differentiation of the experimental
data by orbital momentum values realized with a newly introduced correlation formula.

1 Introduction

Proton radioactivity is understood as the disintegration
of nuclei by the emission of a proton and is specific to
proton-rich odd-Z nuclei. Since its first observation in an
isomeric state of 53Co by Jackson et al. [1], and immedi-
ate confirmation by Cerny et al. [2], the proton emission
became an invaluable source of detailed nuclear structure
information for nuclides far from the β-stability line. The
limit at which nuclei become unbound to the emission of
a proton from their ground states defines the so-called
proton drip line which is a fundamental guideline for nu-
cleosynthesis. Indeed, the proton drip line put some nar-
row constraints for the synthesis of proton-rich nuclei in
explosive astrophysical scenarios such as X-ray bursts [3]
and neutrino-driven winds [4], where the inverse process
of proton radioactivity, called rapid proton capture (rp),
plays an essential role [5]. The study of proton radioac-
tivity is therefore essential for mapping the proton drip
line [6], especially since most of the observed proton emit-
ters are found in the range Z ≥ 51 [7,8] were the proton
drip line is not well defined.

For proton emission to occur, the condition of nega-
tive proton separation energy is not enough because the
odd proton must penetrate a potential barrier correspond-
ing to an electrostatic interaction as well as a centrifugal
contribution. The latter has a more important role in com-
parison to α and cluster decays, due to the much smaller
mass of the proton. Such an interplay between the electro-
static and centrifugal barriers causes Z ≥ 51 nuclei beyond
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the proton drip line to survive long enough to be detected
with half-lives ranging from 10−6 s to a few seconds. In
contradistinction, low-Z proton-rich nuclei cannot be de-
tected directly, being instead registered just as short-lived
resonances.

The theoretical description of this rare phenomenon
received much attention in the recent decade through the
natural extension of models well established for α and
cluster decays. These traditionally include phenomeno-
logical [9–12], microscopic [13–15] and semi-classical for-
malisms [16–19]. The involved phenomenological and mi-
croscopic approaches include many fitted parameters and
gross approximations or rely on the spectroscopic informa-
tion regarding the single-particle configuration of the de-
caying state, which is unfortunately lacking for most of the
proton-emitting nuclei. In view of these shortcomings and
due to increased number of measured proton emissions the
simple semiclassical methods based on the WKB approxi-
mation provide not only a reliable quantitative description
for the proton emission using a minimal number of param-
eters, but also a clear physical meaning for the decay in-
gredients. In this study we pursue the same reasoning and
apply the WKB analysis to a potential barrier completely
determined by a single parameter associated to the range
of the electrostatic interaction. By considering a Hulthen
potential [20,21] for the electrostatic barrier we can ac-
count for additional short-range effects, such as proximity
nuclear interaction and charge diffuseness. Indeed, match-
ing the outer turning point of the Hulthen and Coulomb
potentials amounts to an increase in the usual Coulomb
barrier at short distance. From the successful reproduc-
tion of experimental data with such a simple approach
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one will be able to ascertain the validity of specific ap-
proximations and the relative importance of the ignored
structural features and secondary effects. Not less impor-
tant for the decay studies are the empirical decay laws.
A new such correlation will be also introduced here as a
supporting test for the model predictions.

2 The theoretical framework

From the quantum-mechanical point of view, proton emis-
sion can be modeled as the tunneling of a valence proton
through a potential barrier. Here one separates the bar-
rier into inner and outer regions in terms of the nuclear
radius r. The first region is very narrow and contains in-
formation about the transition of the proton from within
the compound parent nucleus to the touching configura-
tion. It is defined by the interval between the radius of the
parent nucleus R0 and the distance of the touching con-
figuration Rt = R1 + rp, where R1 and rp are the radii of
the daughter nucleus and of the proton, respectively. The
proton radius is considered to be 0.84 fm, while the hard
nuclear radii are defined by

Ri = 1.28A
1/3

i − 0.76 + 0.8A
−1/3

i , i = 0, 1, (1)

where A0 and A1 are the mass numbers corresponding to
the parent and respectively daughter nuclei. The potential
for this inner preformation part is parametrized as [10,22]

Vin(r) = a1r + a2r
2. (2)

The constants a1 and a2 are fixed by requiring Vin(R0) =
Qp and matching the inner and outer potentials at Rt.
The introduction of this inner barrier serves as a phe-
nomenological counterpart for the spectroscopic factor
which defines the proton preformation probability in terms
of single-particle level occupancies. In what concerns the
outer barrier, it is defined as a superposition of a centrifu-
gal energy term

Vl(r) =
h̄2l(l + 1)

2µr2
(3)

and a repulsive electrostatic potential. µ = mA1/(A1 + 1)
is the reduced mass of the decaying nuclear system with
m being the nucleon mass. The orbital momentum l of the
emitted proton must satisfy the angular momentum and
parity conservation laws concerning the initial and final
nuclear states. The electrostatic potential is by default of
the Coulomb type VC(r) = Z1e

2/r, where Z1 is the charge
number of the daughter nucleus. However, in this study we
will employ a Hulthen [20,21] type potential,

VH(r) =
ae2Z1

ear − 1
, (4)

which is actually a generalization of the Coulomb po-
tential with a screening effect included by means of the
parameter a. Contrary to the Coulomb potential, Hulthen

potential is of a short range, behaving as a Coulomb
potential at short distance and dropping exponentially at
large distance. The Hulthen potential is very important in
atomic, molecular and solid state physics where the bound
or free electrons play an important role in the configura-
tion of the electrostatic field. In the present case however,
one cannot speak of an electronic screening because we
deal with bare nuclei, and moreover the mass (energy)
range of the proton is beyond that of electrons. Neverthe-
less, a Hulthen potential allows to adjust the Coulomb
potential by means of its convergence range a, which can
be considered to account for the finite-size nuclear effects
in a gross manner. The deviations from the electrostatic
approximation, i.e. the superposition of the involved
charges, movement of the proton which generates a
magnetic field and the inhomogeneous charge distribution
of the nucleus, also bespeak for a reconsideration of the
Coulomb potential. Moreover, the general theory of scat-
tering is immediately applicable to the case of the Hulthen
potential [21], which is not the case of the Coulomb po-
tential because it decreases too slowly to infinity.

The proton decay half-life is generically defined as

T1/2 =
ln 2

νpP
, (5)

where P is the probability of the proton to penetrate a
phenomenological potential barrier, while

νp =
1

2R0

√

2Ep

µ
(6)

is the proton assault frequency on the barrier. Ep is the
measured kinetic energy of the proton related to the to-
tal decay energy Qp shared between the proton and the
recoiling atom by [8]

Qp =
mp + M(N,Z − 1) + me

M(N,Z − 1) + me
Ep, (7)

where mp = 1.007 a.u. and me = 5.486 · 10−4 a.u. are the
proton and electron masses. The barrier penetrability is
calculated by means of the WKB approximation:

P = exp

{

− 2

h̄

∫ Rout

Rin

√

2µ [V (r) − Qp]dr

}

, (8)

where Rin = R0, while Rout is the second turning point
defined by Vout(Rout) = Qp. The exponent G = − log P
is the well known Gamow factor. As the total potential is
separated in two regions

V (r) =

{

Vin, r < Rt,

Vout = VH(r) + Vl(r), r > Rt,
(9)

the barrier penetrability can be factorized as P = PinPout,
with associated Gamow factors

Gin =
2

h̄

∫ Rt

R0

√

2µ [Vin(r) − Qp]dr, (10)

Gout =
2

h̄

∫ Rout

Rt

√

2µ [Vout(r) − Qp]dr. (11)
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The first factor has a simple analytic form

Gin =

(

a1

4a2

+
Rt

2

)

√

a1Rt + a2R2
t − Qp

− 1
√

a2

(

a2
1

8a2

+
Qp

2

)

× log

[

2
√

a2 (a1Rt + a2R2
t − Qp) + a1 + 2a2Rt

a1 + 2a2R0

]

,

(12)

where the parameters of Vin(r) are expressed as

ak = (−)k QpR
3−k
t − Vout(Rt)R

3−k
0

RtR0(R0 − Rt)
,

k = 1, 2. (13)

To calculate the Gamow factor for the outer region
of the barrier, one must first amend the centrifugal term
by the Langer correction, i.e. to replace l(l + 1) with
(l + 1/2)2 [23]. This modification necessarily arises in the
WKB approximation when the spherical symmetry of the
system is assumed. The spherical symmetry of the proton
emission phenomenon is essential in order for the angular
momentum associated to the proton to be a good quan-
tum number. The consequences of Langer transform are
not negligible, being especially important for the l �= 0
case [15]. Gout can be analytically determined by rewrit-
ing the centrifugal term as [24]

1

r2
≈ a2

(ear − 1)2
. (14)

The above approximation retains the functional form of
the potential and is very good for small values of a such
that its radius of validity is much extended in compari-
son to the region of superposition between a Coulomb po-
tential and a Hulthen potential with the same screening
parameter. With this approximation in place, the barrier
exit radius can be expressed as follows:

Rout =
1

a
log

[

2V1
√

V 2
0 + 4V1Qp − V0

+ 1

]

, (15)

where

V0 = ae2Z1,

V1 =
a2h̄2(l + 1

2
)2

2µ
. (16)

The Gamow factor for the outer barrier region, in the same
approximation is analytically given by

Gout(r) =
1

a
[I1(r) + I2(r)]

∣

∣

Rout

Rt

. (17)

The two terms have similar expressions:

I1(r)=−
√

V1x2 + V0x − Qp

+
√

Qp arcsin

[

xV0 − 2Qp

x
√

4QpV1 + V 2
0

]

− V0

2
√

V1

log

[

2
√

V1 (V1x2+V0x−Qp)+V0+2V1x

]

,

(18)

with x = (ear − 1)−1, and

I2(r)=
√

V1y2 + U0y − U1

−
√

U1 arctan

[

yU0 − 2U1

2
√

U1 (V1y2 + U0y − U1)

]

+
U0

2
√

V1

log
[

2
√

V1 (V1y2+U0y−U1)+U0+2V1y
]

,

(19)

where y = 1+(ear−1)−1 and the following notations were
used: U0 = V0 − 2V1, U1 = Qp + V0 − V1.

3 Numerical results

The proposed model has a single free parameter, the
screening parameter a which is adjusted to fit the ex-
perimental data. The experimental data used in the fit-
ting procedure corresponds to 41 observed and measured
ground state and isomeric proton emissions from nuclei
with Z > 50 for which all the needed information such
as decay energy, angular momentum, branching ratio and
half-lives are known and assigned without major uncer-
tainties. The value of a is then found by minimizing the
quantity

σ =

√

√

√

√

1

41

41
∑

i=1

[

log

(

T i
th

T i
exp

)]2

, (20)

which is just the standard deviation. Due to the analytic
structure of the formalism the fitting procedure is straight-
forward and provides a = 1.299 · 10−3 fm−1 corresponding
to σ = 0.418. As was expected, the value of a is quite
small. This suggests that the electrostatic hypothesis of
the usually employed Coulomb potential is a fairly good
approximation. Nevertheless, the effect of non-zero screen-
ing in the description of the proton emission phenomenon
is sizable as can be seen in fig. 1, where one plotted the dif-
ference between the outer turning point radii correspond-
ing to pure Coulomb and Hulthen barriers, i.e. without
the centrifugal contribution. In case of Coulomb barrier,
this radius takes values between 70 and 115 fm for the con-
sidered nuclei. The screening of the electrostatic repulsion
shortens this radius by several percents. The squeezing of
the barrier is obviously more pronounced for lower reac-
tion energies, where the dependence on the charge number
of the final nucleus is also enhanced.
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Fig. 1. The difference between the turning points associated
to Coulomb potential and Hulthen potential with a = 1.299 ·

10−3 fm−1, plotted as a function of the charge number of the
daughter nucleus for different values of decay energy Qp. The
turning point radii are defined by Vi(Ri) = Qp, (i = C, H).

The comparison of the theoretical predictions with the
experimental data is provided in table 1. The resulted rms
value is comparable to other approaches which however
uses a greater number of adjustable parameters. For ex-
ample, we fitted the same data with the simple universal
decay law for proton emission (UDLP) [17]:

log10 T1/2 = Aχ′ + Bρ′ + C + D
l(l + 1)

ρ′
, (21)

where A, B, C and D are free parameters, while the vari-
ables are defined as

χ′ = Z1

√

A1

(A1 + 1)Qp
,

ρ′ =

√

A1Z1(A
1/3

1 + 1)

A1 + 1
. (22)

Formula (21) is based on the simple premise of the quan-
tum tunneling through a centrifugal and Coulomb bar-
riers. Such that its comparison to the present approach
would show how adequate are the new ingredients, that
is the screening of the electrostatic interaction and the
modeling of the pre-scission stage. Thus, it is found that
the four parameter fit with UDLP gives an rms value
of σ = 0.395, which is barely better than the present
model fit with a single parameter. The four parameters
extracted from the UDLP fit are A = 0.374, B = −0.472,
C = −17.828, and D = 2.463. These values are consis-
tent with previous results [17]. The UDLP predictions are
also listed in table 1, where one can see that although
the overall quality of the two fits is similar there are nu-

clei where the two theoretical predictions significantly di-
verge. In order to have a more insightful opinion on the
relative success of the two approaches, one plotted the
corresponding deviations of the log10 T1/2 between the-
ory and experiment in fig. 2. The major divergence of
theoretical results is found for 109I, 145Tm, 166Ir∗, and
167Ir∗ where the present model have an ascendant, and
for 113Cs, 141Ho∗, 147Tm, and 156Ta∗ with a better repro-
duction of data for UDLP. Figure 2 also distinguishes two
regions: up to 159Re∗ where the UDLP formula is predom-
inantly better, and starting from the same nucleus where
the present approach becomes more successful in repro-
ducing the data.

The biggest discrepancies within the present calcula-
tion are found for 131Eu, 135Tb, and 141Ho nuclei where
the experimental log[T1/2(s)] values are overestimated by
the theoretical results with approximately 0.9. The poor
reproduction of experimental half-lives for these nuclei
is unalterable in other theoretical formulations [10,12,16,
17,19], including UDLP. The origin of this inconsistency
could be ascribed to the transitional character of these
nuclei, which mark the end of the lower Z sequence of
strongly prolate emitters [17,25,26]. Moreover, the quad-
rupole deformation of the discussed nuclei are among the
highest.

The good agreement with experimental data of the
results provided by the present analytical model encour-
aged us to make predictions for the half-lives of observed
proton emitters with incomplete decay information. This
refers to observations where the branching ratio for the
proton emission in respect to other decay channels is not
known or proton emitters with uncertain angular momen-
tum assignment for the ground state which determines
the orbital momentum of the emitted proton. In the first
case, we have just a lower bound for the decay half-lives.
The theoretical predictions shown in table 2 for 144Tm,
172Au, 172Au∗, 173Au, and 173Au∗ nuclei are within the
corresponding restrictions. Relatively long half-lives are
obtained for both ground state and isomeric proton emis-
sions of the 172Au isotope, which is partly due to un-
usually low reported Qp values. For the proton emissions
with uncertain orbital momentum, we provided predic-
tions in table 2 for most probable l values. In this way
one can ascertain the most likely angular-momentum state
of the ground state for the nuclei under consideration.
The ground state for the two lighter nuclei 117La and
121Pr is predominantly considered to be 3/2+, which cor-
responds to l = 2. This assignment is based on the the-
oretical reproduction of the experimental half-life, which
is however model dependent. More recent theoretical cal-
culations based on the consistent treatment of Coriolis
and pairing interactions [27,28] point to a 7/2− ground
state associated to an l = 3 emitted proton for these
two nuclei. This choice is also suggested by the present
model predictions and even stronger by the UDLP cal-
culations. This is a good example for how the intrinsic
simplicity of the proton emission in comparison to pre-
formed clusters of nucleons can be exploited to obtain
unique spectroscopic information on the quantum states
of nuclei.
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Table 1. Decay properties of measured proton emitters with Z ≥ 51: proton-emitting nucleus, orbital momentum transferred
by the proton, decay energy Qp mostly collected from [29] or extracted from more recently measured kinetic energies Ep, partial
proton emission half-life and its decimal logarithm, and the origin of the data concerning orbital momentum and half-life. The
asterisk (∗) denotes an isomeric state for a nucleus. The theoretical half-lives and their logarithmic representations obtained
with the present formalism (th1) as well as with UDLP (21) (th2) are also listed for comparison.

Nucleus l Qp Ref. T1/2 log10[T1/2(s)]

[MeV] exp th1 th2 exp th1 th2
105
51Sb 2 0.4830 [30] 122(11) s 59 s 76 s 2.086 1.768 1.881

109
53I 2 0.8195 [31,32] 92.8(8) µs 85.3 µs 184.8 µs −4.032 −4.069 −3.733

112
55Cs 2 0.8160 [33] 490(35) µs 467 µs 856 µs −3.310 −3.330 −3.068

113
55Cs 2 0.9735 [34] 17.7(4) µs 4.4 µs 11.0 µs −4.752 −5.360 −4.957

130
63Eu 2 1.0280 [35] 0.90+49

−29 ms 0.26 ms 0.39 ms −3.046 −3.585 −3.404
131
63Eu 2 0.9470 [33] 20.0(29) ms 2.7 ms 3.5 ms −1.699 −2.577 −2.461

135
65Tb 3 1.1880 [33] 1.01(28) ms 0.12 ms 0.17 ms −2.996 −3.906 −3.770

140
67Ho 3 1.0940 [36] 6(3) ms 4.4 ms 4.4 ms −2.222 −2.360 −2.359

141
67Ho 3 1.1770 [37] 4.1(1) ms 0.5 ms 0.6 ms −2.387 −3.280 −3.214

141
67Ho∗ 0 1.2430 [37] 7.3(3) µs 2.2 µs 5.1 µs −5.137 −5.649 −5.291

145
69Tm 5 1.7360 [33] 3.17(20) µs 10.37 µs 20.04 µs −5.499 −4.984 −4.698

146
69Tm 0 0.8960 [33,38] 155(20) ms 155ms 170ms −0.810 −0.810 −0.771

146
69Tm∗ 5 1.2000 [33,38] 75(7) ms 205ms 154ms −1.125 −0.687 −0.812

147
69Tm 5 1.0590 [33] 3.87(130) s 8.17 s 4.64 ms 0.587 0.912 0.667

147
69Tm∗ 2 1.1210 [33] 0.36(4) ms 1.08 ms 1.27 ms −3.444 −2.966 −2.897

150
71Lu 5 1.2696 [39] 63(5) ms 125ms 92ms −1.197 −0.904 −1.037

150
71Lu∗ 2 1.2916 [39] 39+8

−6 µs 64 µs 87 µs −4.409 −4.191 −4.059
151
71Lu 5 1.2407 [40,41] 122(2) ms 237ms 165ms −0.914 −0.626 −0.782

151
71Lu∗ 2 1.2940 [42] 17(1) µs 60 µs 81 µs −4.770 −4.224 −4.090

155
73Ta 5 1.4530 [33] 3.2(13) ms 7.5 ms 6.6 ms −2.495 −2.128 −2.180

156
73Ta 2 1.0200 [33] 149(8) ms 295ms 222ms −0.826 −0.531 −0.654

156
73Ta∗ 5 1.1140 [33] 8.57(207) s 19.66 s 9.32 s 0.933 1.294 0.969

157
73Ta 0 0.9350 [43] 0.30(16) s 0.75 s 0.67 s −0.527 −0.125 −0.174

159
75Re∗ 5 1.8160 [44] 21.6(44) µs 44.9 µs 61.6 µs −4.665 −4.348 −4.211

160
75Re 2 1.2670 [45] 0.90+17

−10 ms 1.25 ms 1.24 ms −3.045 −2.905 −2.908
161
75Re 0 1.1970 [33] 440(1) µs 1.08 ms 1.28 ms −3.357 −2.968 −2.891

161
75Re∗ 5 1.3207 [33] 210.0(10) ms 327.5 ms 198.6 ms −0.678 −0.485 −0.702

164
77Ir

∗ 5 1.8253 [46] 73(11) µs 93 µs 111 µs −4.137 −4.034 −3.953
165
77Ir

∗ 5 1.7200 [46] 0.386(46) ms 0.452 ms 0.465 ms −3.413 −3.345 −3.333
166
77Ir 2 1.1520 [33] 150.0(716) ms 82.7 ms 59.9 ms −0.824 −1.083 −1.223

166
77Ir

∗ 5 1.3240 [33] 0.84(28) s 0.89 s 0.47 s −0.076 −0.050 −0.326
167
77Ir 0 1.0700 [33] 74.6(2.9) ms 145.4 ms 124.0 ms −1.128 −0.838 −0.907

167
77Ir

∗ 5 1.2480 [47] 6.9(13) s 5.4 s 2.5 s 0.836 0.735 0.401
170
79Au 2 1.4720 [33] 326(67) µs 140 µs 146 µs −3.487 −3.854 −3.835

170
79Au∗ 5 1.7520 [33] 1.07(13) ms 0.67 ms 0.62 ms −2.971 −3.177 −3.206

171
79Au 0 1.4480 [33] 22.3(24) µs 37.4 µs 49.8 µs −4.652 −4.427 −4.303

171
79Au∗ 5 1.7030 [33] 2.6(2) ms 1.4 ms 1.2 ms −2.587 −2.843 −2.903

176
81Tl 0 1.2650 [33] 6.2(23) ms 8.3 ms 7.4 ms −2.208 −2.079 −2.130

177
81Tl 0 1.1600 [33] 67(37) ms 143ms 109ms −1.176 −0.844 −0.964

177
81Tl∗ 5 1.9670 [33] 353(130) µs 61 µs 68 µs −3.452 −4.214 −4.166

185
83Bi∗ 0 1.6070 [48] 64(5) µs 14 µs 18 µs −4.191 −4.848 −4.742
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Fig. 2. The deviations between calculated and measured deci-
mal logarithms of proton emission half-lives for the considered
nuclei. Open circles refer to results obtained with the present
model, while red triangles denote the UDLP deviations.

An alternative means to confirm specific ingredients
of the proton decay is given by empirical correlations.
There are few such formulations for the proton decay
where the orbital momentum dependence is considered
scalable [16,17,12,18,25]. These correlations are quite ac-
curate in what concerns the systematization of experimen-
tal data by orbital angular momentum for two specific
ranges of charge number, Z < 68 and Z > 68 [26,25],
which exhibit distinct deformation properties. Indeed, the
lighter emitting nuclei have pronounced prolate deforma-
tion, while the heavier ones are predominantly spherical
with oblate tendencies. Here we will employ a Brown-type
empirical formula [49–53]:

log T1/2(s) =
αZβ

1
√

Qp

+ γ, (23)

to obtain correlations specific to the most common orbital
momentum values found in the whole set of proton emit-
ters regardless of their charge number and consequently
deformation. α, β and γ are fitting parameters. In a rep-

resentation in terms of the quantity Zβ
1 /

√

Qp, the above
formula is just a straight line with a slope α and inter-
cept γ. When β = 0, one recovers the well known Geiger-

Nuttall law [54]. While the value β = 1, transforms the
first term of eq. (23) into just the Coulomb parameter
Z1/

√

Qp for a proton-nucleus system. The Coulomb pa-
rameter is a very often used variable for various decay
laws [55] and is a part of the universal decay law valid
for all kinds of clusters and for all isotopic series [56,57]
as well as its generalization to the proton emission [17].
Therefore, an intermediate β value serves as a natural in-
terpolation [49] between equally successful linear plots of
the Geiger-Nuttall and universal decay laws. Numerical
applications [49,50,53] showed that the optimal value of β
resides in the vicinity of 0.5 for cluster emissions. Contrary
to the cluster radioactivity where the centrifugal contri-
bution can be justifiably neglected, the proton emission is
very sensitive to the value of the orbital angular momen-
tum. Nevertheless, fitting the experimental proton emis-
sion data corresponding in part to l = 0, 2 and 5 with the
formula (23), one observed that the power parameter β is
essentially the same for even-l fits. Moreover, as can be
seen from fig. 3(a), the fitting lines are almost parallel,
with l = 2 line positioned above the l = 0 one. Within
such a systematics, the l = 0 and l = 2 data sets are quite
distinguishable, with a slight superposition of data points
corresponding to highest Qp values. Therefore, eq. (23)
can be used as a reliable test for angular momentum as-
signment to proton emitter states. For what concerns the
odd-l nuclei, the fit on l = 5 data revealed a higher value
for the power parameter which provided in fig. 3(b) an
impressive linear distribution of the corresponding data
points. On the other hand, the fitting of the few l = 3
half-life values is far from being concluding. Nevertheless,
including the l = 3 predictions for 117La and 121Pr from
table 2 and fitting the data against the same abscissa,
as in the l = 5 case, one obtained a reasonable linear
dependence. This result, once again, supports the l = 3
proton emission for 117La and 121Pr nuclei, whose data
points would be otherwise completely out of the linear
correlation of l = 2 from fig. 3(a). The difference between
the odd-l slopes generates also a possible superposition of
l = 3 and l = 5 results for high Qp values just like in the
even-l case of fig. 3(a). The similarity with the even-l case
is also reflected in the relative position of lines, i.e. the
higher l line is generally above.

4 Conclusions

In summary, we constructed a simple analytical model for
the proton decay based on the WKB approximation. The
WKB formula was used to calculate the penetrability of a
phenomenological barrier mainly defined by the centrifu-
gal and electrostatic contributions. The barrier is consid-
ered with a pre-scission part defining the probability for
a proton to reach the touching configuration. The novelty
of the present approach consists in the generalization of
the usual Coulomb electrostatic interaction by means of
the Hulthen potential which has a shorter range specified
by its screening parameter a. Such a potential is specif-
ically suited for the proton emission where, due to low
reaction energies, the tail of the potential barrier acquires
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Table 2. Same as in table 1. For 117La, 121Pr, and 172Au one listed the most probable proton orbital momenta with present
(th1) and UDLP (th2) theoretical predictions for each entry.

Nucleus l Qp Ref. T1/2 log10[T1/2(s)]

[MeV] exp th1 th2 exp th1 th2

117
57La 2 0.823 [58] 25.0(28) ms 1.7 ms 2.7 ms −1.602 −2.762 −2.564

3 [27] 14.9 ms 18.0 ms −1.826 −1.746

121
59Pr 2 0.900 [59] 10+6

−3 ms 0.64 ms 1.02 ms −2.000 −3.192 −2.992

3 [28] 5.3 ms 6.4 ms −2.277 −2.192

144
69Tm 5 1.712 [33] ≥ 2.3(9) µs 15.3 µs 28.1 µs −5.638 −4.817 −4.551

172
79Au 0 0.810 [33] > 1.4(2) s 3.7 h 1.9 h 0.146 4.121 3.832

2 [60] 22.3 h 8.5 h 4.905 4.487

172
79Au∗ 5 1.170 [33] > 550(50)ms 139 s 48 s −0.260 2.144 1.685

173
79Au 0 0.992 [61] ≥ 26.3(12) ms 7.8 s 5.1 s −1.580 0.893 0.710

173
79Au∗ 5 1.206 [61] ≥ 12.2(1) ms 50 s 19 s −1.914 1.699 1.269

Fig. 3. Experimental half-lives for proton emission plotted as a function of Z0.73
1 /

p

Qp for even l (a), and as a function of

Z0.85
1 /

p

Qp for odd-l data points (b). Z1 is the charge number of the daughter nucleus. Data points corresponding to each value
of orbital momentum l are denoted by different symbols. The straight lines represent linear fits. The two open circles in (b)
denote the values for 117La and 121Pr nuclei, added after analysing their theoretical predictions.

a significant role. The simple structure of the proposed
model provides an analytical formula for the proton emis-
sion half-time depending only on a and other decay infor-
mation. The screening parameter a is fixed by fitting 41
experimental data points. The agreement with experimen-
tal data is fairly good considering that we have a single
adjustable parameter. In this sense, the theoretical pre-
dictions were also confronted with the results of the uni-
versal decay law for the proton emission which exhibits a
similar agreement with experiment but is employing four
adjustable parameters. This speaks for the ability of the
screening parameter to account for the missing secondary
ingredients which might affect the proton emission. The
model is used to make some predictions, which proved es-

pecially useful in assigning the proton orbital momentum
in case of the 117La and 121Pr decaying nuclei. An im-
portant byproduct of this study is the proposal of a new
empirical correlation between the half-lives for the proton
emission, the charge number of the daughter nucleus and
the Qp value, which is differentiated by the proton orbital
momentum. The last aspect can be used as a reliable tool
to assign the angular momentum and parity of the proton
decaying states.
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